File size: 11,053 Bytes
25dfae5
71ef59e
d9d1598
 
4361fd1
035a7ef
d9d1598
 
 
0bf8729
4fa18d9
 
 
 
 
 
 
71ef59e
0bf8729
 
71ef59e
0bf8729
 
 
 
 
 
71ef59e
f18bd0f
 
 
 
b3db9ce
f18bd0f
 
 
 
 
f10889a
2a9891d
71ef59e
4fa18d9
 
 
 
 
 
 
 
 
 
 
 
 
 
0bf8729
 
 
d9d1598
0bf8729
d9d1598
 
 
 
 
 
 
 
 
6ec3c10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e13ff04
6ec3c10
 
 
 
 
 
 
035a7ef
 
 
 
6ec3c10
 
 
f18bd0f
4361fd1
0bf8729
 
f18bd0f
 
 
a7fd61f
f18bd0f
 
 
 
 
4361fd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec3c10
 
 
96a7d4d
15ef0c9
6ec3c10
 
 
96a7d4d
6ec3c10
 
 
 
 
b89bc96
5a0f6f1
 
 
 
 
4361fd1
 
 
 
 
 
d673ad7
b89bc96
035a7ef
5a0f6f1
4361fd1
 
a83f12f
 
0bf8729
4fa18d9
f10889a
 
4361fd1
ff0b093
 
035a7ef
4fa18d9
25dfae5
0bf8729
4e1e198
4361fd1
 
 
 
 
 
f18bd0f
 
ff0b093
4fa18d9
0bf8729
 
 
 
 
 
 
a32aeaf
0bf8729
4fa18d9
0bf8729
 
 
 
d673ad7
 
 
 
 
 
0bf8729
b3db9ce
 
f18bd0f
d673ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035a7ef
9137c51
 
 
 
035a7ef
d673ad7
 
 
 
 
 
 
 
6ec3c10
035a7ef
d673ad7
 
 
 
 
 
3feaae8
d673ad7
 
 
035a7ef
9137c51
 
 
 
035a7ef
d673ad7
 
 
 
 
25dfae5
 
 
 
 
0bf8729
 
 
 
 
 
3eaf3ec
 
d9bd1e8
96a7d4d
3eaf3ec
 
4361fd1
ff0b093
 
 
 
 
 
 
15ef0c9
ff0b093
 
 
 
 
 
 
035a7ef
 
 
 
 
 
 
4361fd1
 
0bf8729
 
96a7d4d
 
0bf8729
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import spaces, ffmpeg, os, sys, torch, time
import gradio as gr
from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoModelForImageTextToText,
    Gemma3nForConditionalGeneration,
    AutoProcessor,
    BitsAndBytesConfig,
)
from qwen_vl_utils import process_vision_info
from loguru import logger

logger.remove()
logger.add(
    sys.stderr,
    format="<d>{time:YYYY-MM-DD ddd HH:mm:ss}</d> | <lvl>{level}</lvl> | <lvl>{message}</lvl>",
)

# --- Installing Flash Attention for ZeroGPU is special --- #
import subprocess

subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)
# --- now we got Flash Attention ---#

# Set target DEVICE and DTYPE
# For maximum memory efficiency, use bfloat16 if your GPU supports it, otherwise float16.
DTYPE = (
    torch.bfloat16
    if torch.cuda.is_available() and torch.cuda.is_bf16_supported()
    else torch.float16
)
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Use "auto" to let accelerate handle device placement (GPU, CPU, disk)
DEVICE = "auto"
logger.info(f"Device: {DEVICE}, dtype: {DTYPE}")


def get_fps_ffmpeg(video_path: str):
    probe = ffmpeg.probe(video_path)
    # Find the first video stream
    video_stream = next(
        (stream for stream in probe["streams"] if stream["codec_type"] == "video"), None
    )
    if video_stream is None:
        raise ValueError("No video stream found")
    # Frame rate is given as a string fraction, e.g., '30000/1001'
    r_frame_rate = video_stream["r_frame_rate"]
    num, denom = map(int, r_frame_rate.split("/"))
    return num / denom


def load_model(
    model_name: str = "chancharikm/qwen2.5-vl-7b-cam-motion-preview",
    use_flash_attention: bool = True,
    apply_quantization: bool = True,
):
    # We recommend enabling flash_attention_2 for better acceleration and memory saving,
    # especially in multi-image and video scenarios.
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,  # Load model weights in 4-bit
        bnb_4bit_quant_type="nf4",  # Use NF4 quantization (or "fp4")
        bnb_4bit_compute_dtype=DTYPE,  # Perform computations in bfloat16/float16
        bnb_4bit_use_double_quant=True,  # Optional: further quantization for slightly more memory saving
    )

    # Determine model family from model name
    model_family = model_name.split("/")[-1].split("-")[
        0
    ]  # Extract model family from name

    # Common model loading arguments
    common_args = {
        "torch_dtype": DTYPE,
        "device_map": DEVICE,
        "low_cpu_mem_usage": True,
        "quantization_config": bnb_config if apply_quantization else None,
    }

    # Add flash attention if supported and requested
    if use_flash_attention:
        common_args["attn_implementation"] = "flash_attention_2"

    # Load model based on family
    match model_family:
        case "qwen2.5" | "Qwen2.5":
            model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
                model_name, **common_args
            )
        case "InternVL3":
            model = AutoModelForImageTextToText.from_pretrained(
                model_name, **common_args
            )
        case "gemma":
            model = Gemma3nForConditionalGeneration.from_pretrained(
                model_name, **common_args
            )
        case _:
            raise ValueError(f"Unsupported model family: {model_family}")

    # Set model to evaluation mode for inference (disables dropout, etc.)
    return model.eval()


def load_processor(model_name="Qwen/Qwen2.5-VL-7B-Instruct"):
    return AutoProcessor.from_pretrained(
        model_name,
        device_map=DEVICE,
        use_fast=True,
        torch_dtype=DTYPE,
    )


logger.debug("Loading Models and Processors...")
MODEL_ZOO = {
    "qwen2.5-vl-7b-cam-motion-preview": load_model(
        model_name="chancharikm/qwen2.5-vl-7b-cam-motion-preview",
        use_flash_attention=False,
        apply_quantization=False,
    ),
    "qwen2.5-vl-7b-instruct": load_model(
        model_name="Qwen/Qwen2.5-VL-7B-Instruct",
        use_flash_attention=False,
        apply_quantization=False,
    ),
    "qwen2.5-vl-3b-instruct": load_model(
        model_name="Qwen/Qwen2.5-VL-3B-Instruct",
        use_flash_attention=False,
        apply_quantization=False,
    ),
    "InternVL3-1B-hf": load_model(
        model_name="OpenGVLab/InternVL3-1B-hf",
        use_flash_attention=False,
        apply_quantization=False,
    ),
    "InternVL3-2B-hf": load_model(
        model_name="OpenGVLab/InternVL3-2B-hf",
        use_flash_attention=False,
        apply_quantization=False,
    ),
    "InternVL3-8B-hf": load_model(
        model_name="OpenGVLab/InternVL3-8B-hf",
        use_flash_attention=False,
        apply_quantization=True,
    ),
    "gemma-3n-e4b-it": load_model(
        model_name="google/gemma-3n-e4b-it",
        use_flash_attention=False,
        apply_quantization=True,
    ),
}

PROCESSORS = {
    "qwen2.5-vl-7b-cam-motion-preview": load_processor("Qwen/Qwen2.5-VL-7B-Instruct"),
    "qwen2.5-vl-7b-instruct": load_processor("Qwen/Qwen2.5-VL-7B-Instruct"),
    "qwen2.5-vl-3b-instruct": load_processor("Qwen/Qwen2.5-VL-3B-Instruct"),
    "InternVL3-1B-hf": load_processor("OpenGVLab/InternVL3-1B-hf"),
    "InternVL3-2B-hf": load_processor("OpenGVLab/InternVL3-2B-hf"),
    "InternVL3-8B-hf": load_processor("OpenGVLab/InternVL3-8B-hf"),
    "gemma-3n-e4b-it": load_processor("google/gemma-3n-e4b-it"),
}
logger.debug("Models and Processors Loaded!")


@spaces.GPU(duration=120)
def inference(
    video_path: str,
    prompt: str = "Describe the camera motion in this video.",
    model_name: str = "qwen2.5-vl-7b-instruct",
    custom_fps: int = 8,
    max_tokens: int = 256,
    temperature: float = 0.0,
):
    s_time = time.time()
    # default processor
    # processor, model = PROCESSOR, MODEL
    # processor = load_processor()
    # model = load_model(
    #     use_flash_attention=use_flash_attention, apply_quantization=apply_quantization
    # )
    model = MODEL_ZOO[model_name]
    processor = PROCESSORS[model_name]

    # The model is trained on 8.0 FPS which we recommend for optimal inference
    fps = custom_fps if custom_fps else get_fps_ffmpeg(video_path)
    logger.info(f"{os.path.basename(video_path)} FPS: {fps}")
    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "video",
                    "video": video_path,
                    "fps": fps,
                },
                {"type": "text", "text": prompt},
            ],
        }
    ]

    # text = processor.apply_chat_template(
    #     messages, tokenize=False, add_generation_prompt=True
    # )
    # image_inputs, video_inputs, video_kwargs = process_vision_info(
    #     messages, return_video_kwargs=True
    # )

    # This prevents PyTorch from building the computation graph for gradients,
    # saving a significant amount of memory for intermediate activations.
    with torch.no_grad():
        model_family = model_name.split("-")[0]
        match model_family:
            case "qwen2.5":
                text = processor.apply_chat_template(
                    messages, tokenize=False, add_generation_prompt=True
                )
                image_inputs, video_inputs, video_kwargs = process_vision_info(
                    messages, return_video_kwargs=True
                )
                inputs = processor(
                    text=[text],
                    images=image_inputs,
                    videos=video_inputs,
                    # fps=fps,
                    padding=True,
                    return_tensors="pt",
                    **video_kwargs,
                )
                inputs = inputs.to("cuda")

                # Inference
                generated_ids = model.generate(
                    **inputs,
                    max_new_tokens=max_tokens,
                    temperature=float(temperature),
                    do_sample=temperature > 0.0,
                )
                generated_ids_trimmed = [
                    out_ids[len(in_ids) :]
                    for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
                ]
                output_text = processor.batch_decode(
                    generated_ids_trimmed,
                    skip_special_tokens=True,
                    clean_up_tokenization_spaces=False,
                )[0]
            case "InternVL3" | "gemma":
                inputs = processor.apply_chat_template(
                    messages,
                    add_generation_prompt=True,
                    tokenize=True,
                    return_dict=True,
                    return_tensors="pt",
                    fps=fps,
                    # num_frames = 8
                ).to("cuda", dtype=DTYPE)

                output = model.generate(
                    **inputs,
                    max_new_tokens=max_tokens,
                    temperature=float(temperature),
                    do_sample=temperature > 0.0,
                )
                output_text = processor.decode(
                    output[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
                )
            case _:
                raise ValueError(f"{model_name} is not currently supported")
    return {
        "output_text": output_text,
        "fps": fps,
        "inference_time": time.time() - s_time,
    }


demo = gr.Interface(
    fn=inference,
    inputs=[
        gr.Video(label="Input Video"),
        gr.Textbox(
            label="Prompt",
            lines=3,
            info="Some models like [cam motion](https://huggingface.co/chancharikm/qwen2.5-vl-7b-cam-motion-preview) are trained specific prompts",
            value="Describe the camera motion in this video.",
        ),
        gr.Dropdown(label="Model", choices=list(MODEL_ZOO.keys())),
        gr.Number(
            label="FPS",
            info="inference sampling rate (Qwen2.5VL is trained on videos with 8 fps); a value of 0 means the FPS of the input video will be used",
            value=8,
            minimum=0,
            step=1,
        ),
        gr.Slider(
            label="Max Tokens",
            info="maximum number of tokens to generate",
            value=128,
            minimum=32,
            maximum=512,
            step=32,
        ),
        gr.Slider(
            label="Temperature",
            value=0.0,
            minimum=0.0,
            maximum=1.0,
            step=0.1,
        ),
        # gr.Checkbox(label="Use Flash Attention", value=False),
        # gr.Checkbox(label="Apply Quantization", value=True),
    ],
    outputs=gr.JSON(label="Output JSON"),
    title="Video Captioning with VLM",
    description='comparing various "small" VLMs on the task of video captioning',
    api_name="video_inference",
)
demo.launch(
    mcp_server=True, app_kwargs={"docs_url": "/docs"}  # add FastAPI Swagger API Docs
)