Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,053 Bytes
25dfae5 71ef59e d9d1598 4361fd1 035a7ef d9d1598 0bf8729 4fa18d9 71ef59e 0bf8729 71ef59e 0bf8729 71ef59e f18bd0f b3db9ce f18bd0f f10889a 2a9891d 71ef59e 4fa18d9 0bf8729 d9d1598 0bf8729 d9d1598 6ec3c10 e13ff04 6ec3c10 035a7ef 6ec3c10 f18bd0f 4361fd1 0bf8729 f18bd0f a7fd61f f18bd0f 4361fd1 6ec3c10 96a7d4d 15ef0c9 6ec3c10 96a7d4d 6ec3c10 b89bc96 5a0f6f1 4361fd1 d673ad7 b89bc96 035a7ef 5a0f6f1 4361fd1 a83f12f 0bf8729 4fa18d9 f10889a 4361fd1 ff0b093 035a7ef 4fa18d9 25dfae5 0bf8729 4e1e198 4361fd1 f18bd0f ff0b093 4fa18d9 0bf8729 a32aeaf 0bf8729 4fa18d9 0bf8729 d673ad7 0bf8729 b3db9ce f18bd0f d673ad7 035a7ef 9137c51 035a7ef d673ad7 6ec3c10 035a7ef d673ad7 3feaae8 d673ad7 035a7ef 9137c51 035a7ef d673ad7 25dfae5 0bf8729 3eaf3ec d9bd1e8 96a7d4d 3eaf3ec 4361fd1 ff0b093 15ef0c9 ff0b093 035a7ef 4361fd1 0bf8729 96a7d4d 0bf8729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import spaces, ffmpeg, os, sys, torch, time
import gradio as gr
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoModelForImageTextToText,
Gemma3nForConditionalGeneration,
AutoProcessor,
BitsAndBytesConfig,
)
from qwen_vl_utils import process_vision_info
from loguru import logger
logger.remove()
logger.add(
sys.stderr,
format="<d>{time:YYYY-MM-DD ddd HH:mm:ss}</d> | <lvl>{level}</lvl> | <lvl>{message}</lvl>",
)
# --- Installing Flash Attention for ZeroGPU is special --- #
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
# --- now we got Flash Attention ---#
# Set target DEVICE and DTYPE
# For maximum memory efficiency, use bfloat16 if your GPU supports it, otherwise float16.
DTYPE = (
torch.bfloat16
if torch.cuda.is_available() and torch.cuda.is_bf16_supported()
else torch.float16
)
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Use "auto" to let accelerate handle device placement (GPU, CPU, disk)
DEVICE = "auto"
logger.info(f"Device: {DEVICE}, dtype: {DTYPE}")
def get_fps_ffmpeg(video_path: str):
probe = ffmpeg.probe(video_path)
# Find the first video stream
video_stream = next(
(stream for stream in probe["streams"] if stream["codec_type"] == "video"), None
)
if video_stream is None:
raise ValueError("No video stream found")
# Frame rate is given as a string fraction, e.g., '30000/1001'
r_frame_rate = video_stream["r_frame_rate"]
num, denom = map(int, r_frame_rate.split("/"))
return num / denom
def load_model(
model_name: str = "chancharikm/qwen2.5-vl-7b-cam-motion-preview",
use_flash_attention: bool = True,
apply_quantization: bool = True,
):
# We recommend enabling flash_attention_2 for better acceleration and memory saving,
# especially in multi-image and video scenarios.
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, # Load model weights in 4-bit
bnb_4bit_quant_type="nf4", # Use NF4 quantization (or "fp4")
bnb_4bit_compute_dtype=DTYPE, # Perform computations in bfloat16/float16
bnb_4bit_use_double_quant=True, # Optional: further quantization for slightly more memory saving
)
# Determine model family from model name
model_family = model_name.split("/")[-1].split("-")[
0
] # Extract model family from name
# Common model loading arguments
common_args = {
"torch_dtype": DTYPE,
"device_map": DEVICE,
"low_cpu_mem_usage": True,
"quantization_config": bnb_config if apply_quantization else None,
}
# Add flash attention if supported and requested
if use_flash_attention:
common_args["attn_implementation"] = "flash_attention_2"
# Load model based on family
match model_family:
case "qwen2.5" | "Qwen2.5":
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_name, **common_args
)
case "InternVL3":
model = AutoModelForImageTextToText.from_pretrained(
model_name, **common_args
)
case "gemma":
model = Gemma3nForConditionalGeneration.from_pretrained(
model_name, **common_args
)
case _:
raise ValueError(f"Unsupported model family: {model_family}")
# Set model to evaluation mode for inference (disables dropout, etc.)
return model.eval()
def load_processor(model_name="Qwen/Qwen2.5-VL-7B-Instruct"):
return AutoProcessor.from_pretrained(
model_name,
device_map=DEVICE,
use_fast=True,
torch_dtype=DTYPE,
)
logger.debug("Loading Models and Processors...")
MODEL_ZOO = {
"qwen2.5-vl-7b-cam-motion-preview": load_model(
model_name="chancharikm/qwen2.5-vl-7b-cam-motion-preview",
use_flash_attention=False,
apply_quantization=False,
),
"qwen2.5-vl-7b-instruct": load_model(
model_name="Qwen/Qwen2.5-VL-7B-Instruct",
use_flash_attention=False,
apply_quantization=False,
),
"qwen2.5-vl-3b-instruct": load_model(
model_name="Qwen/Qwen2.5-VL-3B-Instruct",
use_flash_attention=False,
apply_quantization=False,
),
"InternVL3-1B-hf": load_model(
model_name="OpenGVLab/InternVL3-1B-hf",
use_flash_attention=False,
apply_quantization=False,
),
"InternVL3-2B-hf": load_model(
model_name="OpenGVLab/InternVL3-2B-hf",
use_flash_attention=False,
apply_quantization=False,
),
"InternVL3-8B-hf": load_model(
model_name="OpenGVLab/InternVL3-8B-hf",
use_flash_attention=False,
apply_quantization=True,
),
"gemma-3n-e4b-it": load_model(
model_name="google/gemma-3n-e4b-it",
use_flash_attention=False,
apply_quantization=True,
),
}
PROCESSORS = {
"qwen2.5-vl-7b-cam-motion-preview": load_processor("Qwen/Qwen2.5-VL-7B-Instruct"),
"qwen2.5-vl-7b-instruct": load_processor("Qwen/Qwen2.5-VL-7B-Instruct"),
"qwen2.5-vl-3b-instruct": load_processor("Qwen/Qwen2.5-VL-3B-Instruct"),
"InternVL3-1B-hf": load_processor("OpenGVLab/InternVL3-1B-hf"),
"InternVL3-2B-hf": load_processor("OpenGVLab/InternVL3-2B-hf"),
"InternVL3-8B-hf": load_processor("OpenGVLab/InternVL3-8B-hf"),
"gemma-3n-e4b-it": load_processor("google/gemma-3n-e4b-it"),
}
logger.debug("Models and Processors Loaded!")
@spaces.GPU(duration=120)
def inference(
video_path: str,
prompt: str = "Describe the camera motion in this video.",
model_name: str = "qwen2.5-vl-7b-instruct",
custom_fps: int = 8,
max_tokens: int = 256,
temperature: float = 0.0,
):
s_time = time.time()
# default processor
# processor, model = PROCESSOR, MODEL
# processor = load_processor()
# model = load_model(
# use_flash_attention=use_flash_attention, apply_quantization=apply_quantization
# )
model = MODEL_ZOO[model_name]
processor = PROCESSORS[model_name]
# The model is trained on 8.0 FPS which we recommend for optimal inference
fps = custom_fps if custom_fps else get_fps_ffmpeg(video_path)
logger.info(f"{os.path.basename(video_path)} FPS: {fps}")
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": video_path,
"fps": fps,
},
{"type": "text", "text": prompt},
],
}
]
# text = processor.apply_chat_template(
# messages, tokenize=False, add_generation_prompt=True
# )
# image_inputs, video_inputs, video_kwargs = process_vision_info(
# messages, return_video_kwargs=True
# )
# This prevents PyTorch from building the computation graph for gradients,
# saving a significant amount of memory for intermediate activations.
with torch.no_grad():
model_family = model_name.split("-")[0]
match model_family:
case "qwen2.5":
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs, video_kwargs = process_vision_info(
messages, return_video_kwargs=True
)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
# fps=fps,
padding=True,
return_tensors="pt",
**video_kwargs,
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=float(temperature),
do_sample=temperature > 0.0,
)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[0]
case "InternVL3" | "gemma":
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
fps=fps,
# num_frames = 8
).to("cuda", dtype=DTYPE)
output = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=float(temperature),
do_sample=temperature > 0.0,
)
output_text = processor.decode(
output[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
case _:
raise ValueError(f"{model_name} is not currently supported")
return {
"output_text": output_text,
"fps": fps,
"inference_time": time.time() - s_time,
}
demo = gr.Interface(
fn=inference,
inputs=[
gr.Video(label="Input Video"),
gr.Textbox(
label="Prompt",
lines=3,
info="Some models like [cam motion](https://huggingface.co/chancharikm/qwen2.5-vl-7b-cam-motion-preview) are trained specific prompts",
value="Describe the camera motion in this video.",
),
gr.Dropdown(label="Model", choices=list(MODEL_ZOO.keys())),
gr.Number(
label="FPS",
info="inference sampling rate (Qwen2.5VL is trained on videos with 8 fps); a value of 0 means the FPS of the input video will be used",
value=8,
minimum=0,
step=1,
),
gr.Slider(
label="Max Tokens",
info="maximum number of tokens to generate",
value=128,
minimum=32,
maximum=512,
step=32,
),
gr.Slider(
label="Temperature",
value=0.0,
minimum=0.0,
maximum=1.0,
step=0.1,
),
# gr.Checkbox(label="Use Flash Attention", value=False),
# gr.Checkbox(label="Apply Quantization", value=True),
],
outputs=gr.JSON(label="Output JSON"),
title="Video Captioning with VLM",
description='comparing various "small" VLMs on the task of video captioning',
api_name="video_inference",
)
demo.launch(
mcp_server=True, app_kwargs={"docs_url": "/docs"} # add FastAPI Swagger API Docs
)
|