Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,121 Bytes
1df8e73 110f151 1df8e73 110f151 1df8e73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# Standard library imports
import os
from datetime import datetime
import subprocess
import time
import uuid
import io
from threading import Thread
# Third-party imports
import numpy as np
import torch
from PIL import Image
import accelerate
import gradio as gr
import spaces
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoTokenizer,
AutoProcessor,
TextIteratorStreamer,
)
# Local imports
from qwen_vl_utils import process_vision_info
# Set device agnostic code
if torch.cuda.is_available():
device = "cuda"
elif (torch.backends.mps.is_available()) and (torch.backends.mps.is_built()):
device = "mps"
else:
device = "cpu"
print(f"[INFO] Using device: {device}")
# Define supported media extensions
image_extensions = Image.registered_extensions()
video_extensions = (
"avi",
"mp4",
"mov",
"mkv",
"flv",
"wmv",
"mjpeg",
"gif",
"webm",
"m4v",
"3gp",
) # Removed .wav as it's audio, not video
def identify_and_save_blob(blob_path):
"""
Identifies if the blob is an image or video and saves it with a unique name.
Returns the saved file path and its media type ("image" or "video").
"""
try:
with open(blob_path, "rb") as file:
blob_content = file.read()
# Try to identify if it's an image
try:
Image.open(
io.BytesIO(blob_content)
).verify() # Check if it's a valid image
extension = ".png" # Default to PNG for saving
media_type = "image"
except (IOError, SyntaxError):
# If it's not a valid image, assume it's a video
# We can try to get the actual extension from the blob_path,
# but for unknown types, MP4 is a good default.
_, ext = os.path.splitext(blob_path)
if ext.lower() in video_extensions:
extension = ext.lower()
else:
extension = ".mp4" # Default to MP4 for saving
media_type = "video"
# Create a unique filename
filename = f"temp_{uuid.uuid4()}_media{extension}"
with open(filename, "wb") as f:
f.write(blob_content)
return filename, media_type
except FileNotFoundError:
raise ValueError(f"The file {blob_path} was not found.")
except Exception as e:
raise ValueError(f"An error occurred while processing the file: {e}")
# Model and Processor Loading
# Define models and processors as dictionaries for easy selection
models = {
"Qwen/Qwen2.5-VL-7B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct",
trust_remote_code=True,
torch_dtype="auto",
device_map="auto",
).eval(),
"Qwen/Qwen2.5-VL-3B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-3B-Instruct",
trust_remote_code=True,
torch_dtype="auto",
device_map="auto",
).eval(),
}
processors = {
"Qwen/Qwen2.5-VL-7B-Instruct": AutoProcessor.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True
),
"Qwen/Qwen2.5-VL-3B-Instruct": AutoProcessor.from_pretrained(
"Qwen/Qwen2.5-VL-3B-Instruct", trust_remote_code=True
),
}
DESCRIPTION = "[Qwen2.5-VL Demo](https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5)"
@spaces.GPU
def run_example(
video_path: str, text_input: str, model_id: str = "Qwen/Qwen2.5-VL-7B-Instruct"
):
# if media_input is None:
# raise gr.Error("No media provided. Please upload an image or video before submitting.")
# if model_id is None:
# raise gr.Error("No model selected. Please select a model.")
start_time = time.time()
# media_path = None
# media_type = None
# # Determine if it's an image (numpy array from gr.Image) or a file (from gr.File)
# if isinstance(media_input, np.ndarray): # This comes from gr.Image
# img = Image.fromarray(np.uint8(media_input))
# timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# filename = f"image_{timestamp}.png"
# img.save(filename)
# media_path = os.path.abspath(filename)
# media_type = "image"
# elif isinstance(media_input, str): # This comes from gr.File (filepath)
# path = media_input
# _, ext = os.path.splitext(path)
# ext = ext.lower()
# if ext in image_extensions:
# media_path = path
# media_type = "image"
# elif ext in video_extensions:
# media_path = path
# media_type = "video"
# else:
# # For blobs or unknown file types, try to identify
# try:
# media_path, media_type = identify_and_save_blob(path)
# print(f"Identified blob as: {media_type}, saved to: {media_path}")
# except Exception as e:
# print(f"Error identifying blob: {e}")
# raise gr.Error("Unsupported media type. Please upload an image (PNG, JPG, etc.) or a video (MP4, AVI, etc.).")
# else:
# raise gr.Error("Unsupported input type for media. Please upload an image or video.")
# print(f"[INFO] Processing {media_type} from {media_path}")
model = models[model_id]
processor = processors[model_id]
# Construct messages list based on media type
content_list = []
# if media_type == "image":
# content_list.append({"type": "image", "image": media_path})
# elif media_type == "video":
# content_list.append({"type": "video", "video": media_path, "fps": 8.0}) # Qwen2.5-VL often uses 8fps
content_list.append({"type": "video", "video": video_path, "fps": 8.0})
content_list.append({"type": "text", "text": text_input})
# if text_input:
# content_list.append({"type": "text", "text": text_input})
# else:
# # Default prompt if no text_input is provided
# content_list.append({"type": "text", "text": "What is in this image/video?"})
messages = [{"role": "user", "content": content_list}]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(
messages
) # This utility handles both image and video info
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(device)
# Inference: Generation of the output using streaming
streamer = TextIteratorStreamer(
processor, skip_prompt=True, **{"skip_special_tokens": True}
)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
# Start generation in a separate thread to allow streaming
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer, None # Yield partial text and None for time until full generation
# Clean up the temporary file after it's processed (optional, depends on use case)
# if media_path and os.path.exists(media_path) and "temp_" in os.path.basename(media_path):
# os.remove(media_path)
end_time = time.time()
total_time = round(end_time - start_time, 2)
# Final yield with total time
yield buffer, f"{total_time} seconds"
# Clean up the temporary file after it's fully processed
# if media_path and os.path.exists(media_path) and "temp_" in os.path.basename(media_path):
# os.remove(media_path)
# print(f"[INFO] Cleaned up temporary file: {media_path}")
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Qwen2.5-VL Input"):
with gr.Row():
with gr.Column():
# Change input to gr.File to accept both image and video
input_media = gr.Video(label="Input Video")
text_input = gr.Textbox(
label="Text Prompt",
value="Describe the camera motion in this video.",
)
model_selector = gr.Dropdown(
choices=list(models.keys()),
label="Model",
)
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text", interactive=False)
time_taken = gr.Textbox(
label="Time taken for processing + inference", interactive=False
)
submit_btn.click(
run_example,
[input_media, text_input, model_selector],
[output_text, time_taken],
) # Ensure output components match yield order
demo.launch(debug=True)
|