File size: 1,281 Bytes
c7bf5ca
20c959b
c7bf5ca
 
 
 
 
 
 
22ed741
c7bf5ca
22ed741
c7bf5ca
c5f8dce
c7bf5ca
22ed741
c7bf5ca
22ed741
c7bf5ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM 
import gc
import torch

def clear_memory():
    gc.collect()
    torch.cuda.empty_cache()


model_name = "GIGAParviz/Firooze_test"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name , low_cpu_mem_usage=True , device_map="cpu")
model = model.to("cpu")
model.gradient_checkpointing_enable()

pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=128)

def generate_response(prompt):
    clear_memory() 
    instruction = f"### Instruction:\n{prompt}\n\n### Response:\n"
    result = pipe(instruction)

    return result[0]['generated_text'][len(instruction):]

with gr.Blocks() as demo:
    gr.Markdown("<h1 style='text-align: center;'>🔮 Persian LLM made by A.M.Parviz</h1>")

    prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Type your prompt here...", lines=2)
    
    generate_button = gr.Button("Generate Response")
    
    response_output = gr.Textbox(label="Generated Response", lines=5)
    
    generate_button.click(fn=generate_response, inputs=prompt_input, outputs=response_output)
    
    clear_button = gr.ClearButton([prompt_input, response_output])

demo.launch()