Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,397 Bytes
773f59c cc44d48 773f59c d7ceee3 773f59c d7ceee3 773f59c cc44d48 773f59c cc44d48 d7ceee3 cc44d48 773f59c 941faf0 cc3c7b8 d7ceee3 cc3c7b8 773f59c d7ceee3 773f59c cc44d48 773f59c fa5fd5f 773f59c cc44d48 773f59c b52ae58 fa5fd5f b52ae58 cc44d48 773f59c cc44d48 773f59c c464ae6 5cfa298 c464ae6 773f59c d7ceee3 773f59c d7ceee3 773f59c d7ceee3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import logging
import asyncio
import json
import ast
from typing import List, Dict, Any, Union
from dotenv import load_dotenv
# LangChain imports
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_core.messages import SystemMessage, HumanMessage
import os
import configparser
def getconfig(configfile_path: str):
"""
Read the config file
Params
----------------
configfile_path: file path of .cfg file
"""
config = configparser.ConfigParser()
try:
config.read_file(open(configfile_path))
return config
except:
logging.warning("config file not found")
# ---------------------------------------------------------------------
# Provider-agnostic authentication and configuration
# ---------------------------------------------------------------------
def get_auth(provider: str) -> dict:
"""Get authentication configuration for different providers"""
auth_configs = {
"openai": {"api_key": os.getenv("OPENAI_API_KEY")},
"huggingface": {"api_key": os.getenv("HF_TOKEN")},
"anthropic": {"api_key": os.getenv("ANTHROPIC_API_KEY")},
"cohere": {"api_key": os.getenv("COHERE_API_KEY")},
}
if provider not in auth_configs:
raise ValueError(f"Unsupported provider: {provider}")
auth_config = auth_configs[provider]
api_key = auth_config.get("api_key")
if not api_key:
raise RuntimeError(f"Missing API key for provider '{provider}'. Please set the appropriate environment variable.")
return auth_config
# ---------------------------------------------------------------------
# Model / client initialization (non exaustive list of providers)
# ---------------------------------------------------------------------
config = getconfig("model_params.cfg")
PROVIDER = config.get("generator", "PROVIDER")
MODEL = config.get("generator", "MODEL")
MAX_TOKENS = int(config.get("generator", "MAX_TOKENS"))
TEMPERATURE = float(config.get("generator", "TEMPERATURE"))
INFERENCE_PROVIDER = config.get("generator", "INFERENCE_PROVIDER")
ORGANIZATION = config.get("generator", "ORGANIZATION")
# Set up authentication for the selected provider
auth_config = get_auth(PROVIDER)
def get_chat_model():
"""Initialize the appropriate LangChain chat model based on provider"""
common_params = {
"temperature": TEMPERATURE,
"max_tokens": MAX_TOKENS,
}
#### Currently the option to fetach any other Generator type are disabled #####3
# if PROVIDER == "openai":
# return ChatOpenAI(
# model=MODEL,
# openai_api_key=auth_config["api_key"],
# **common_params
# )
# elif PROVIDER == "anthropic":
# return ChatAnthropic(
# model=MODEL,
# anthropic_api_key=auth_config["api_key"],
# **common_params
# )
# elif PROVIDER == "cohere":
# return ChatCohere(
# model=MODEL,
# cohere_api_key=auth_config["api_key"],
# **common_params
# )
if PROVIDER == "huggingface":
# Initialize HuggingFaceEndpoint with explicit parameters
llm = HuggingFaceEndpoint(
repo_id=MODEL,
huggingfacehub_api_token=auth_config["api_key"],
task="text-generation",
provider=INFERENCE_PROVIDER,
server_kwargs={"bill_to": ORGANIZATION},
temperature=TEMPERATURE,
max_new_tokens=MAX_TOKENS
)
return ChatHuggingFace(llm=llm)
else:
raise ValueError(f"Unsupported provider: {PROVIDER}")
# Initialize provider-agnostic chat model
chat_model = get_chat_model()
# ---------------------------------------------------------------------
# Core generation function for both Gradio UI and MCP
# ---------------------------------------------------------------------
async def _call_llm(messages: list) -> str:
"""
Provider-agnostic LLM call using LangChain.
Args:
messages: List of LangChain message objects
Returns:
Generated response content as string
"""
try:
# Use async invoke for better performance
response = await chat_model.ainvoke(messages)
print(response)
return response.content
#return response.content.strip()
except Exception as e:
logging.exception(f"LLM generation failed with provider '{PROVIDER}' and model '{MODEL}': {e}")
raise
def build_messages(question: str, context: str) -> list:
"""
Build messages in LangChain format.
Args:
question: The user's question
context: The relevant context for answering
Returns:
List of LangChain message objects
"""
system_content = (
"""
You are an expert assistant. Your task is to generate accurate, helpful responses using only the
information contained in the "CONTEXT" provided.
Instructions:
- Answer based only on provided context: Use only the information present in the retrieved_paragraphs below. Do not use any external knowledge or make assumptions beyond what is explicitly stated.
- Language matching: Respond in the same language as the user's query.
- Handle missing information: If the retrieved paragraphs do not contain sufficient information to answer the query, respond with "I don't know" or equivalent in the query language. If information is incomplete, state what you know and acknowledge limitations.
- Be accurate and specific: When information is available, provide clear, specific answers. Include relevant details, useful facts, and numbers from the context.
- Stay focused: Answer only what is asked. Do not provide additional information not requested.
- Structure your response effectively:
* Do not just summarize each passage one by one. Group your summaries to highlight the key parts in the explanation.
* Use bullet points and lists when it makes sense to improve readability.
* You do not need to use every passage. Only use the ones that help answer the question.
- Format your response properly: Use markdown formatting (bullet points, numbered lists, headers) to make your response clear and easy to read. Example: <br> for linebreaks
Input Format:
- Query: {query}
- Retrieved Paragraphs: {retrieved_paragraphs}
Generate your response based on these guidelines.
"""
)
user_content = f"### CONTEXT\n{context}\n\n### USER QUESTION\n{question}"
return [
SystemMessage(content=system_content),
HumanMessage(content=user_content)
]
async def generate(query: str, context: Union[str, List[Dict[str, Any]]]) -> str:
"""
Generate an answer to a query using provided context through RAG.
This function takes a user query and relevant context, then uses a language model
to generate a comprehensive answer based on the provided information.
Args:
query (str): User query
context (list): List of retrieval result objects (dictionaries)
Returns:
str: The generated answer based on the query and context
"""
if not query.strip():
return "Error: Query cannot be empty"
# Handle both string context (for Gradio UI) and list context (from retriever)
if isinstance(context, list):
if not context:
return "Error: No retrieval results provided"
# Process the retrieval results
# processed_results = extract_relevant_fields(context)
formatted_context = context
# if not formatted_context.strip():
# return "Error: No valid content found in retrieval results"
elif isinstance(context, str):
if not context.strip():
return "Error: Context cannot be empty"
formatted_context = context
else:
return "Error: Context must be either a string or list of retrieval results"
try:
messages = build_messages(query, formatted_context)
answer = await _call_llm(messages)
return answer
except Exception as e:
logging.exception("Generation failed")
return f"Error: {str(e)}" |