import logging import pathlib import gradio as gr import pandas as pd from gt4sd.algorithms.conditional_generation.reinvent import Reinvent, ReinventGenerator from gt4sd.algorithms.registry import ApplicationsRegistry from utils import draw_grid_generate logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) def run_inference( algorithm_version: str, smiles: str, length: float, sample_uniquely: bool, number_of_samples: int, ): config = ReinventGenerator( algorithm_version=algorithm_version, max_sequence_length=length, randomize=True, sample_uniquely=sample_uniquely, ) model = Reinvent(config, target=smiles) samples = list(model.sample(number_of_samples)) return draw_grid_generate(samples=samples, n_cols=5, seeds=[smiles]) if __name__ == "__main__": # Preparation (retrieve all available algorithms) all_algos = ApplicationsRegistry.list_available() algos = [ x["algorithm_version"] for x in list(filter(lambda x: "Reinvent" in x["algorithm_name"], all_algos)) ] # Load metadata metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards") examples = pd.read_csv(metadata_root.joinpath("examples.csv"), header=None).fillna( "" ) with open(metadata_root.joinpath("article.md"), "r") as f: article = f.read() with open(metadata_root.joinpath("description.md"), "r") as f: description = f.read() demo = gr.Interface( fn=run_inference, title="REINVENT", inputs=[ gr.Dropdown( algos, label="Algorithm version", value="v0", ), gr.Textbox( label="Primer SMILES", placeholder="FP(F)F.CP(C)c1ccccc1.[Au]", lines=1, ), gr.Slider( minimum=5, maximum=400, value=100, label="Maximal sequence length", step=1, ), gr.Radio(choices=[True, False], label="Sampling uniquely", value=True), gr.Slider( minimum=1, maximum=50, value=10, label="Number of samples", step=1 ), ], outputs=gr.HTML(label="Output"), article=article, description=description, examples=examples.values.tolist(), ) demo.launch(debug=True, show_error=True)