|
from langchain_core.tools import tool |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
import os |
|
from supabase.client import Client, create_client |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain.tools.retriever import create_retriever_tool |
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
|
|
supabase_url = os.environ.get("SUPABASE_URL") |
|
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY") |
|
supabase: Client = create_client(supabase_url, supabase_key) |
|
vector_store = SupabaseVectorStore( |
|
client=supabase, |
|
embedding= embeddings, |
|
table_name="documents", |
|
query_name="match_documents", |
|
) |
|
|
|
question_retrieve_tool = create_retriever_tool( |
|
vector_store.as_retriever(), |
|
"Question_Retriever", |
|
"Find similar questions in the vector database for the given question.", |
|
) |
|
|
|
|
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""Search Wikipedia for a query and return maximum 2 results. |
|
Args: |
|
query: The search query.""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
] |
|
) |
|
return {"wiki_results": formatted_search_docs} |
|
|
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Search Tavily for a query and return maximum 3 results. |
|
Args: |
|
query: The search query.""" |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
] |
|
) |
|
return {"web_results": formatted_search_docs} |
|
|
|
|
|
@tool |
|
def arxiv_search(query: str) -> str: |
|
"""Search Arxiv for a query and return maximum 3 result. |
|
Args: |
|
query: The search query.""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in search_docs |
|
] |
|
) |
|
return {"arxiv_results": formatted_search_docs} |
|
|
|
|
|
@tool |
|
def similar_question_search(question: str) -> str: |
|
"""Search the vector database for similar questions and return the first results. |
|
|
|
Args: |
|
question: the question human provided.""" |
|
matched_docs = vector_store.similarity_search(question, 3) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in matched_docs |
|
]) |
|
return {"similar_questions": formatted_search_docs} |