from langchain_core.tools import tool from typing import List, Dict, Any, Optional import tempfile from urllib.parse import urlparse import os import uuid import requests from PIL import Image import pytesseract import pandas as pd @tool def save_and_read_file(content: str, filename: Optional[str] = None) -> str: """ Save content to a file and return the path. Args: content (str): the content to save to the file filename (str, optional): the name of the file. If not provided, a random name file will be created. """ temp_dir = tempfile.gettempdir() if filename is None: temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir) filepath = temp_file.name else: filepath = os.path.join(temp_dir, filename) with open(filepath, "w") as f: f.write(content) return f"File saved to {filepath}. You can read this file to process its contents." @tool def download_file_from_url(url: str, filename: Optional[str] = None) -> str: """ Download a file from a URL and save it to a temporary location. Args: url (str): the URL of the file to download. filename (str, optional): the name of the file. If not provided, a random name file will be created. """ try: # Parse URL to get filename if not provided if not filename: path = urlparse(url).path filename = os.path.basename(path) if not filename: filename = f"downloaded_{uuid.uuid4().hex[:8]}" # Create temporary file temp_dir = tempfile.gettempdir() filepath = os.path.join(temp_dir, filename) # Download the file response = requests.get(url, stream=True) response.raise_for_status() # Save the file with open(filepath, "wb") as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) return f"File downloaded to {filepath}. You can read this file to process its contents." except Exception as e: return f"Error downloading file: {str(e)}" @tool def extract_text_from_image(image_path: str) -> str: """ Extract text from an image using OCR library pytesseract (if available). Args: image_path (str): the path to the image file. """ try: # Open the image image = Image.open(image_path) # Extract text from the image text = pytesseract.image_to_string(image) return f"Extracted text from image:\n\n{text}" except Exception as e: return f"Error extracting text from image: {str(e)}" @tool def analyze_csv_file(file_path: str, query: str) -> str: """ Analyze a CSV file using pandas and answer a question about it. Args: file_path (str): the path to the CSV file. query (str): Question about the data """ try: # Read the CSV file df = pd.read_csv(file_path) # Run various analyses based on the query result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n" result += f"Columns: {', '.join(df.columns)}\n\n" # Add summary statistics result += "Summary statistics:\n" result += str(df.describe()) return result except Exception as e: return f"Error analyzing CSV file: {str(e)}" @tool def analyze_excel_file(file_path: str, query: str) -> str: """ Analyze an Excel file using pandas and answer a question about it. Args: file_path (str): the path to the Excel file. query (str): Question about the data """ try: # Read the Excel file df = pd.read_excel(file_path) # Run various analyses based on the query result = ( f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n" ) result += f"Columns: {', '.join(df.columns)}\n\n" # Add summary statistics result += "Summary statistics:\n" result += str(df.describe()) return result except Exception as e: return f"Error analyzing Excel file: {str(e)}"