from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
import os
from supabase.client import Client, create_client
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import SupabaseVectorStore
from langchain.tools.retriever import create_retriever_tool
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
supabase_url = os.environ.get("SUPABASE_URL")
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY")
supabase: Client = create_client(supabase_url, supabase_key)
vector_store = SupabaseVectorStore(
client=supabase,
embedding= embeddings,
table_name="documents",
query_name="match_documents",
)
question_retrieve_tool = create_retriever_tool(
vector_store.as_retriever(),
"Question_Retriever",
"Find similar questions in the vector database for the given question.",
)
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
]
)
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
]
)
return {"web_results": formatted_search_docs}
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content[:1000]}\n'
for doc in search_docs
]
)
return {"arxiv_results": formatted_search_docs}
@tool
def similar_question_search(question: str) -> str:
"""Search the vector database for similar questions and return the first results.
Args:
question: the question human provided."""
matched_docs = vector_store.similarity_search(question, 3)
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content[:1000]}\n'
for doc in matched_docs
])
return {"similar_questions": formatted_search_docs}