import gradio as gr from fastai.vision.all import * import torch learn = load_learner('food_classif_model_v1.pkl') def predict_image(img): pred,los,prob = learn.predict(img) top_values, top_indx = torch.topk(prob, 3) # show 3 max values return pred # text_out = '' # if (top_values < 0.4).all(): # text_out = 'I do not know what is that' # else: # text_out = f'{food_indx[top_indx[0]]} = {top_values[0]}\n{food_indx[top_indx[1]]} = {top_values[1]}\n{food_indx[top_indx[2]]} = {top_values[2]}' # return text_out # UI huggface intrfce = gr.Interface(fn=predict_image, inputs=gr.Image(type="pil"), outputs=gr.Label()).launch()