Spaces:
Running
on
Zero
Running
on
Zero
Upload 3 files
Browse files- app.py +427 -0
- packages.txt +2 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from nemo.collections.asr.models import ASRModel
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
import gc
|
6 |
+
from pathlib import Path
|
7 |
+
from pydub import AudioSegment
|
8 |
+
import numpy as np
|
9 |
+
import os
|
10 |
+
import tempfile
|
11 |
+
import gradio.themes as gr_themes
|
12 |
+
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
MODEL_NAME = "nvidia/parakeet-tdt-0.6b-v2"
|
15 |
+
|
16 |
+
model = ASRModel.from_pretrained(model_name=MODEL_NAME)
|
17 |
+
model.eval()
|
18 |
+
|
19 |
+
def get_audio_segment(audio_path, start_second, end_second):
|
20 |
+
if not audio_path or not Path(audio_path).exists():
|
21 |
+
print(f"Warning: Audio path '{audio_path}' not found or invalid for clipping.")
|
22 |
+
return None
|
23 |
+
try:
|
24 |
+
start_ms = int(start_second * 1000)
|
25 |
+
end_ms = int(end_second * 1000)
|
26 |
+
start_ms = max(0, start_ms)
|
27 |
+
if end_ms <= start_ms:
|
28 |
+
print(f"Warning: End time ({end_second}s) is not after start time ({start_second}s). Adjusting end time.")
|
29 |
+
end_ms = start_ms + 100
|
30 |
+
# Unconditionally use pydub for all supported types (.mp3, .wav, .mp4, etc)
|
31 |
+
audio = AudioSegment.from_file(audio_path) # pydub/ffmpeg supports most formats!
|
32 |
+
clipped_audio = audio[start_ms:end_ms]
|
33 |
+
samples = np.array(clipped_audio.get_array_of_samples())
|
34 |
+
if clipped_audio.channels == 2:
|
35 |
+
samples = samples.reshape((-1, 2)).mean(axis=1).astype(samples.dtype)
|
36 |
+
frame_rate = clipped_audio.frame_rate
|
37 |
+
if frame_rate <= 0:
|
38 |
+
print(f"Warning: Invalid frame rate ({frame_rate}) detected for clipped audio.")
|
39 |
+
frame_rate = audio.frame_rate
|
40 |
+
if samples.size == 0:
|
41 |
+
print(f"Warning: Clipped audio resulted in empty samples array ({start_second}s to {end_second}s).")
|
42 |
+
return None
|
43 |
+
return (frame_rate, samples)
|
44 |
+
except FileNotFoundError:
|
45 |
+
print(f"Error: Audio file not found at path: {audio_path}")
|
46 |
+
return None
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Error clipping audio {audio_path} from {start_second}s to {end_second}s: {e}")
|
49 |
+
return None
|
50 |
+
|
51 |
+
def seconds_to_srt_ts(seconds: float):
|
52 |
+
hours = int(seconds // 3600)
|
53 |
+
minutes = int((seconds % 3600) // 60)
|
54 |
+
secs = int(seconds % 60)
|
55 |
+
ms = int((seconds - int(seconds)) * 1000)
|
56 |
+
return f"{hours:02d}:{minutes:02d}:{secs:02d},{ms:03d}"
|
57 |
+
|
58 |
+
@spaces.GPU
|
59 |
+
def get_transcripts_and_raw_times(file_path):
|
60 |
+
if not file_path:
|
61 |
+
gr.Error("No file path provided for transcription.", duration=None)
|
62 |
+
return [], [], None, gr.DownloadButton(visible=False)
|
63 |
+
|
64 |
+
vis_data = [["N/A", "N/A", "Processing failed"]]
|
65 |
+
raw_times_data = [[0.0, 0.0]]
|
66 |
+
temp_files = [] # To track all temporary files created
|
67 |
+
srt_file_path = None
|
68 |
+
original_path_name = Path(file_path).name
|
69 |
+
|
70 |
+
try:
|
71 |
+
try:
|
72 |
+
gr.Info(f"Loading file: {original_path_name}", duration=2)
|
73 |
+
# pydub/ffmpeg supports .mp3, .wav, .mp4, .m4a, .aac, etc.
|
74 |
+
audio = AudioSegment.from_file(file_path) # pydub handles mp4 via ffmpeg!
|
75 |
+
except Exception as load_e:
|
76 |
+
gr.Error(f"Failed to load file {original_path_name}: {load_e}", duration=None)
|
77 |
+
return [["Error", "Error", "Load failed"]], [[0.0, 0.0]], file_path, gr.DownloadButton(visible=False)
|
78 |
+
|
79 |
+
# Process audio for transcription
|
80 |
+
try:
|
81 |
+
target_sr = 16000
|
82 |
+
if audio.frame_rate != target_sr:
|
83 |
+
audio = audio.set_frame_rate(target_sr)
|
84 |
+
if audio.channels == 2:
|
85 |
+
audio = audio.set_channels(1)
|
86 |
+
elif audio.channels > 2:
|
87 |
+
gr.Error(f"Audio has {audio.channels} channels. Only mono (1) or stereo (2) supported.", duration=None)
|
88 |
+
return [["Error", "Error", f"{audio.channels}-channel audio not supported"]], [[0.0, 0.0]], file_path, gr.DownloadButton(visible=False)
|
89 |
+
except Exception as process_e:
|
90 |
+
gr.Error(f"Failed to process audio: {process_e}", duration=None)
|
91 |
+
return [["Error", "Error", "Audio processing failed"]], [[0.0, 0.0]], file_path, gr.DownloadButton(visible=False)
|
92 |
+
|
93 |
+
# Check if audio is longer than chunk size
|
94 |
+
audio_length_sec = len(audio) / 1000.0 # pydub uses milliseconds
|
95 |
+
|
96 |
+
# Configuration for chunking - 10 minutes works on a 24GB RTX3090.
|
97 |
+
chunk_size_sec = 10 * 60
|
98 |
+
overlap_sec = 5 # 5 seconds overlap between chunks
|
99 |
+
|
100 |
+
# Convert to milliseconds for pydub
|
101 |
+
chunk_size_ms = chunk_size_sec * 1000
|
102 |
+
overlap_ms = overlap_sec * 1000
|
103 |
+
|
104 |
+
# Determine if we need chunking
|
105 |
+
need_chunking = audio_length_sec > chunk_size_sec
|
106 |
+
|
107 |
+
# Initialize list to hold ALL segments from ALL chunks
|
108 |
+
all_segments = []
|
109 |
+
|
110 |
+
if need_chunking:
|
111 |
+
# Calculate number of chunks
|
112 |
+
total_chunks = max(1, int(np.ceil(audio_length_sec / chunk_size_sec)))
|
113 |
+
print(f"Audio length: {audio_length_sec:.2f} seconds ({audio_length_sec/60:.2f} minutes)")
|
114 |
+
print(f"Chunk size: {chunk_size_sec} seconds ({chunk_size_sec/60:.2f} minutes)")
|
115 |
+
print(f"Total chunks needed: {total_chunks}")
|
116 |
+
|
117 |
+
gr.Info(f"Audio is {audio_length_sec/60:.1f} minutes long. Processing in {total_chunks} chunks...", duration=3)
|
118 |
+
|
119 |
+
# Process each chunk
|
120 |
+
for i in range(total_chunks):
|
121 |
+
# Calculate chunk boundaries in milliseconds
|
122 |
+
chunk_start_ms = i * chunk_size_ms
|
123 |
+
chunk_end_ms = min(len(audio), (i + 1) * chunk_size_ms)
|
124 |
+
|
125 |
+
# Add overlap except for first and last chunks
|
126 |
+
if i > 0:
|
127 |
+
chunk_start_ms -= overlap_ms # Extend start earlier
|
128 |
+
|
129 |
+
if i < total_chunks - 1 and chunk_end_ms + overlap_ms <= len(audio):
|
130 |
+
chunk_end_ms += overlap_ms # Extend end later
|
131 |
+
|
132 |
+
# Calculate the effective region (excluding overlaps)
|
133 |
+
effective_start_ms = chunk_start_ms
|
134 |
+
effective_end_ms = chunk_end_ms
|
135 |
+
|
136 |
+
# Don't count overlap in effective region
|
137 |
+
if i > 0:
|
138 |
+
effective_start_ms += overlap_ms
|
139 |
+
if i < total_chunks - 1:
|
140 |
+
effective_end_ms -= overlap_ms
|
141 |
+
|
142 |
+
# Convert to seconds for logging
|
143 |
+
chunk_start_sec = chunk_start_ms / 1000
|
144 |
+
chunk_end_sec = chunk_end_ms / 1000
|
145 |
+
effective_start_sec = effective_start_ms / 1000
|
146 |
+
effective_end_sec = effective_end_ms / 1000
|
147 |
+
|
148 |
+
print(f"Chunk {i+1} boundaries: {chunk_start_sec:.2f}s - {chunk_end_sec:.2f}s")
|
149 |
+
print(f"Chunk {i+1} effective: {effective_start_sec:.2f}s - {effective_end_sec:.2f}s")
|
150 |
+
|
151 |
+
# Extract chunk
|
152 |
+
chunk = audio[chunk_start_ms:chunk_end_ms]
|
153 |
+
|
154 |
+
# Save chunk to temporary file
|
155 |
+
chunk_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
156 |
+
chunk.export(chunk_file.name, format="wav")
|
157 |
+
temp_files.append(chunk_file.name)
|
158 |
+
chunk_file.close()
|
159 |
+
|
160 |
+
try:
|
161 |
+
# Move model to GPU at the latest possible time
|
162 |
+
model.to(device)
|
163 |
+
|
164 |
+
# Process chunk
|
165 |
+
chunk_duration = (chunk_end_ms - chunk_start_ms) / 1000.0
|
166 |
+
gr.Info(f"Transcribing chunk {i+1}/{total_chunks} ({chunk_start_sec:.1f}s - {chunk_end_sec:.1f}s, {chunk_duration:.1f}s)...", duration=2)
|
167 |
+
|
168 |
+
output = model.transcribe([chunk_file.name], timestamps=True)
|
169 |
+
|
170 |
+
# Move model back to CPU immediately after processing
|
171 |
+
if device == 'cuda':
|
172 |
+
model.cpu()
|
173 |
+
|
174 |
+
if (output and isinstance(output, list) and output[0] and
|
175 |
+
hasattr(output[0], 'timestamp') and output[0].timestamp and
|
176 |
+
'segment' in output[0].timestamp):
|
177 |
+
|
178 |
+
chunk_segments = output[0].timestamp['segment']
|
179 |
+
segments_before = len(all_segments)
|
180 |
+
|
181 |
+
print(f"Chunk {i+1}: Got {len(chunk_segments)} segments")
|
182 |
+
|
183 |
+
# Add all segments from this chunk, adjusting timestamps
|
184 |
+
for segment in chunk_segments:
|
185 |
+
# Adjust timestamps to global timeline
|
186 |
+
segment_start = segment['start'] + chunk_start_sec
|
187 |
+
segment_end = segment['end'] + chunk_start_sec
|
188 |
+
|
189 |
+
# Only keep segments that are mostly within the effective region
|
190 |
+
# Using segment midpoint to determine inclusion
|
191 |
+
segment_midpoint = (segment_start + segment_end) / 2
|
192 |
+
if effective_start_sec <= segment_midpoint <= effective_end_sec:
|
193 |
+
all_segments.append({
|
194 |
+
'start': segment_start,
|
195 |
+
'end': segment_end,
|
196 |
+
'segment': segment['segment']
|
197 |
+
})
|
198 |
+
|
199 |
+
print(f"Chunk {i+1}: Added {len(all_segments) - segments_before} segments (total now: {len(all_segments)})")
|
200 |
+
|
201 |
+
# Clean memory between chunks
|
202 |
+
gc.collect()
|
203 |
+
if device == 'cuda':
|
204 |
+
torch.cuda.empty_cache()
|
205 |
+
|
206 |
+
except torch.cuda.OutOfMemoryError as oom_e:
|
207 |
+
print(f"CUDA Out of Memory error on chunk {i+1}: {oom_e}")
|
208 |
+
gr.Warning(f"CUDA memory error on chunk {i+1}. Trying to continue with remaining chunks.", duration=3)
|
209 |
+
if device == 'cuda':
|
210 |
+
model.cpu() # Make sure we move back to CPU
|
211 |
+
torch.cuda.empty_cache()
|
212 |
+
gc.collect()
|
213 |
+
# Continue with next chunk
|
214 |
+
|
215 |
+
except Exception as chunk_e:
|
216 |
+
gr.Warning(f"Error processing chunk {i+1}: {chunk_e}", duration=3)
|
217 |
+
print(f"Error processing chunk {i+1}: {chunk_e}")
|
218 |
+
if device == 'cuda':
|
219 |
+
model.cpu() # Make sure we move back to CPU
|
220 |
+
# Continue with other chunks even if one fails
|
221 |
+
|
222 |
+
else:
|
223 |
+
# For shorter audio, process the entire file at once
|
224 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
225 |
+
audio.export(temp_file.name, format="wav")
|
226 |
+
temp_files.append(temp_file.name)
|
227 |
+
temp_file.close()
|
228 |
+
|
229 |
+
try:
|
230 |
+
model.to(device)
|
231 |
+
gr.Info(f"Transcribing {original_path_name} on {device}...", duration=2)
|
232 |
+
output = model.transcribe([temp_file.name], timestamps=True)
|
233 |
+
|
234 |
+
# Move model back to CPU immediately
|
235 |
+
if device == 'cuda':
|
236 |
+
model.cpu()
|
237 |
+
|
238 |
+
if (not output or not isinstance(output, list) or not output[0]
|
239 |
+
or not hasattr(output[0], 'timestamp') or not output[0].timestamp
|
240 |
+
or 'segment' not in output[0].timestamp):
|
241 |
+
gr.Error("Transcription failed or produced unexpected output format.", duration=None)
|
242 |
+
return [["Error", "Error", "Transcription Format Issue"]], [[0.0, 0.0]], file_path, gr.DownloadButton(visible=False)
|
243 |
+
|
244 |
+
chunk_segments = output[0].timestamp['segment']
|
245 |
+
for segment in chunk_segments:
|
246 |
+
all_segments.append({
|
247 |
+
'start': segment['start'],
|
248 |
+
'end': segment['end'],
|
249 |
+
'segment': segment['segment']
|
250 |
+
})
|
251 |
+
print(f"Single chunk processing: Got {len(all_segments)} segments")
|
252 |
+
|
253 |
+
except torch.cuda.OutOfMemoryError as e:
|
254 |
+
error_msg = 'CUDA out of memory. The file may be too large for available GPU memory.'
|
255 |
+
print(f"CUDA OutOfMemoryError: {e}")
|
256 |
+
gr.Error(error_msg, duration=None)
|
257 |
+
return [["OOM", "OOM", error_msg]], [[0.0, 0.0]], file_path, gr.DownloadButton(visible=False)
|
258 |
+
|
259 |
+
except Exception as e:
|
260 |
+
error_msg = f"Transcription failed: {e}"
|
261 |
+
print(f"Error during transcription processing: {e}")
|
262 |
+
gr.Error(error_msg, duration=None)
|
263 |
+
return [["Error", "Error", error_msg]], [[0.0, 0.0]], file_path, gr.DownloadButton(visible=False)
|
264 |
+
|
265 |
+
# If we have no segments (all chunks failed) return an error
|
266 |
+
if len(all_segments) == 0:
|
267 |
+
gr.Error("Failed to transcribe any portion of the audio.", duration=None)
|
268 |
+
return [["Error", "Error", "No transcription segments generated"]], [[0.0, 0.0]], file_path, gr.DownloadButton(visible=False)
|
269 |
+
|
270 |
+
# Debug: print a few segments to check timestamps
|
271 |
+
print(f"All segments: {len(all_segments)}")
|
272 |
+
all_segments.sort(key=lambda x: x['start']) # Ensure chronological order
|
273 |
+
print(f"First segment: {all_segments[0]['start']:.2f}s - {all_segments[0]['end']:.2f}s: {all_segments[0]['segment']}")
|
274 |
+
if len(all_segments) > 1:
|
275 |
+
print(f"Second segment: {all_segments[1]['start']:.2f}s - {all_segments[1]['end']:.2f}s: {all_segments[1]['segment']}")
|
276 |
+
if len(all_segments) > 2:
|
277 |
+
middle_idx = len(all_segments) // 2
|
278 |
+
print(f"Middle segment: {all_segments[middle_idx]['start']:.2f}s - {all_segments[middle_idx]['end']:.2f}s: {all_segments[middle_idx]['segment']}")
|
279 |
+
print(f"Last segment: {all_segments[-1]['start']:.2f}s - {all_segments[-1]['end']:.2f}s: {all_segments[-1]['segment']}")
|
280 |
+
|
281 |
+
# Create visualization data
|
282 |
+
vis_data = [[f"{ts['start']:.2f}", f"{ts['end']:.2f}", ts['segment']] for ts in all_segments]
|
283 |
+
raw_times_data = [[ts['start'], ts['end']] for ts in all_segments]
|
284 |
+
|
285 |
+
# Generate SRT with correct timestamps
|
286 |
+
srt_lines = []
|
287 |
+
for i, ts in enumerate(all_segments, 1):
|
288 |
+
start = seconds_to_srt_ts(ts['start'])
|
289 |
+
end = seconds_to_srt_ts(ts['end'])
|
290 |
+
text = ts['segment'].replace('\n', ' ').strip()
|
291 |
+
srt_lines.append(f"{i}\n{start} --> {end}\n{text}\n")
|
292 |
+
|
293 |
+
# Save SRT file
|
294 |
+
button_update = gr.DownloadButton(visible=False)
|
295 |
+
try:
|
296 |
+
temp_srt_file = tempfile.NamedTemporaryFile(delete=False, suffix=".srt", mode='w', encoding='utf-8')
|
297 |
+
temp_srt_file.write('\n'.join(srt_lines))
|
298 |
+
srt_file_path = temp_srt_file.name
|
299 |
+
temp_srt_file.close()
|
300 |
+
print(f"SRT transcript saved to temporary file: {srt_file_path}")
|
301 |
+
button_update = gr.DownloadButton(value=srt_file_path, visible=True, label="Download Subtitle File (.srt)")
|
302 |
+
except Exception as srt_e:
|
303 |
+
gr.Error(f"Failed to create transcript SRT file: {srt_e}", duration=None)
|
304 |
+
print(f"Error writing SRT: {srt_e}")
|
305 |
+
|
306 |
+
gr.Info(f"Transcription complete! Generated {len(all_segments)} segments.", duration=2)
|
307 |
+
return vis_data, raw_times_data, file_path, button_update
|
308 |
+
|
309 |
+
finally:
|
310 |
+
# Clean up all temporary files
|
311 |
+
for temp_path in temp_files:
|
312 |
+
if temp_path and os.path.exists(temp_path):
|
313 |
+
try:
|
314 |
+
os.remove(temp_path)
|
315 |
+
print(f"Temporary file {temp_path} removed.")
|
316 |
+
except Exception as e:
|
317 |
+
print(f"Error removing temporary file {temp_path}: {e}")
|
318 |
+
|
319 |
+
# Final cleanup
|
320 |
+
try:
|
321 |
+
if 'model' in locals() and hasattr(model, 'cpu'):
|
322 |
+
if device == 'cuda':
|
323 |
+
model.cpu()
|
324 |
+
gc.collect()
|
325 |
+
if device == 'cuda':
|
326 |
+
torch.cuda.empty_cache()
|
327 |
+
except Exception as cleanup_e:
|
328 |
+
print(f"Error during model cleanup: {cleanup_e}")
|
329 |
+
gr.Warning(f"Issue during model cleanup: {cleanup_e}", duration=5)
|
330 |
+
|
331 |
+
def play_segment(evt: gr.SelectData, raw_ts_list, current_audio_path):
|
332 |
+
if not isinstance(raw_ts_list, list):
|
333 |
+
print(f"Warning: raw_ts_list is not a list ({type(raw_ts_list)}). Cannot play segment.")
|
334 |
+
return gr.Audio(value=None, label="Selected Segment")
|
335 |
+
if not current_audio_path:
|
336 |
+
print("No audio path available to play segment from.")
|
337 |
+
return gr.Audio(value=None, label="Selected Segment")
|
338 |
+
selected_index = evt.index[0]
|
339 |
+
if selected_index < 0 or selected_index >= len(raw_ts_list):
|
340 |
+
print(f"Invalid index {selected_index} selected for list of length {len(raw_ts_list)}.")
|
341 |
+
return gr.Audio(value=None, label="Selected Segment")
|
342 |
+
if (not isinstance(raw_ts_list[selected_index], (list, tuple))
|
343 |
+
or len(raw_ts_list[selected_index]) != 2):
|
344 |
+
print(f"Warning: Data at index {selected_index} is not in the expected format [start, end].")
|
345 |
+
return gr.Audio(value=None, label="Selected Segment")
|
346 |
+
start_time_s, end_time_s = raw_ts_list[selected_index]
|
347 |
+
print(f"Attempting to play segment: {current_audio_path} from {start_time_s:.2f}s to {end_time_s:.2f}s")
|
348 |
+
segment_data = get_audio_segment(current_audio_path, start_time_s, end_time_s)
|
349 |
+
if segment_data:
|
350 |
+
print("Segment data retrieved successfully.")
|
351 |
+
return gr.Audio(value=segment_data, autoplay=True, label=f"Segment: {start_time_s:.2f}s - {end_time_s:.2f}s", interactive=False)
|
352 |
+
else:
|
353 |
+
print("Failed to get audio segment data.")
|
354 |
+
return gr.Audio(value=None, label="Selected Segment")
|
355 |
+
|
356 |
+
article = (
|
357 |
+
"<p style='font-size: 1.1em;'>"
|
358 |
+
"Upload an <b>audio file</b> (wav, mp3, etc) <b>or a video file</b> (mp4, m4a, etc) and this tool will extract the audio stream and generate subtitles in .srt format.<br>"
|
359 |
+
"Files longer than 10 minutes will be automatically split into chunks for processing.</p>"
|
360 |
+
)
|
361 |
+
|
362 |
+
# NVIDIA-inspired theme
|
363 |
+
nvidia_theme = gr_themes.Default(
|
364 |
+
primary_hue=gr_themes.Color(
|
365 |
+
c50="#E6F1D9",
|
366 |
+
c100="#CEE3B3",
|
367 |
+
c200="#B5D58C",
|
368 |
+
c300="#9CC766",
|
369 |
+
c400="#84B940",
|
370 |
+
c500="#76B900",
|
371 |
+
c600="#68A600",
|
372 |
+
c700="#5A9200",
|
373 |
+
c800="#4C7E00",
|
374 |
+
c900="#3E6A00",
|
375 |
+
c950="#2F5600"
|
376 |
+
),
|
377 |
+
neutral_hue="gray",
|
378 |
+
font=[gr_themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
|
379 |
+
).set()
|
380 |
+
|
381 |
+
with gr.Blocks(theme=nvidia_theme) as demo:
|
382 |
+
model_display_name = MODEL_NAME.split('/')[-1] if '/' in MODEL_NAME else MODEL_NAME
|
383 |
+
gr.Markdown(f"<h1 style='text-align: center; margin: 0 auto;'>Subtitle Generation (en) with {model_display_name}</h1>")
|
384 |
+
gr.HTML(article)
|
385 |
+
|
386 |
+
current_audio_path_state = gr.State(None)
|
387 |
+
raw_timestamps_list_state = gr.State([])
|
388 |
+
|
389 |
+
# Use gr.File instead of gr.Audio to accept video files
|
390 |
+
file_input = gr.File(
|
391 |
+
label="Upload Audio or Video File (MP3, WAV, MP4, etc)",
|
392 |
+
file_types=[".mp3", ".wav", ".mp4", ".m4a", ".aac", ".ogg", ".flac", ".mov", ".mkv"],
|
393 |
+
)
|
394 |
+
|
395 |
+
file_transcribe_btn = gr.Button("Transcribe Uploaded File", variant="primary")
|
396 |
+
|
397 |
+
gr.Markdown("---")
|
398 |
+
gr.Markdown("<p><strong style='color: #FF0000; font-size: 1.2em;'>Transcription Results (Click row to play segment)</strong></p>")
|
399 |
+
|
400 |
+
download_btn = gr.DownloadButton(label="Download Subtitle File (.srt)", visible=False)
|
401 |
+
|
402 |
+
vis_timestamps_df = gr.DataFrame(
|
403 |
+
headers=["Start (s)", "End (s)", "Segment"],
|
404 |
+
datatype=["number", "number", "str"],
|
405 |
+
wrap=True,
|
406 |
+
label="Transcription Segments"
|
407 |
+
)
|
408 |
+
|
409 |
+
selected_segment_player = gr.Audio(label="Selected Segment", interactive=False)
|
410 |
+
|
411 |
+
file_transcribe_btn.click(
|
412 |
+
fn=get_transcripts_and_raw_times,
|
413 |
+
inputs=[file_input],
|
414 |
+
outputs=[vis_timestamps_df, raw_timestamps_list_state, current_audio_path_state, download_btn],
|
415 |
+
api_name="transcribe_file"
|
416 |
+
)
|
417 |
+
|
418 |
+
vis_timestamps_df.select(
|
419 |
+
fn=play_segment,
|
420 |
+
inputs=[raw_timestamps_list_state, current_audio_path_state],
|
421 |
+
outputs=[selected_segment_player],
|
422 |
+
)
|
423 |
+
|
424 |
+
if __name__ == "__main__":
|
425 |
+
print("Launching Gradio Demo...")
|
426 |
+
demo.queue()
|
427 |
+
demo.launch(server_name="0.0.0.0")
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
ffmpeg
|
2 |
+
libsndfile1
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Cython
|
2 |
+
git+https://github.com/NVIDIA/NeMo.git@r2.3.0#egg=nemo_toolkit[asr]
|
3 |
+
numpy<2.0
|
4 |
+
spaces
|
5 |
+
gradio
|