File size: 21,787 Bytes
aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc aeffe14 8de9bbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
import gradio as gr
import torch
import torch.nn as nn
from torchvision import transforms
import timm
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import cv2
from ultralytics import YOLO
import warnings
import os
import json
import pandas as pd
from datetime import datetime
import io
import base64
warnings.filterwarnings('ignore')
class GradioLettuceAnalysisPipeline:
def __init__(self, detection_model_path, growth_model_path, health_classification_model_path):
"""
Initialize the complete lettuce analysis pipeline for Gradio interface
"""
self.detection_model_path = detection_model_path
self.growth_model_path = growth_model_path
self.health_classification_model_path = health_classification_model_path
# Fixed confidence thresholds (no longer adjustable via sliders)
self.detection_confidence = 0.5
self.growth_confidence = 0.25
# Load all models
self.load_models()
# Health classification transforms
self.health_classification_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def load_models(self):
"""Load all three models"""
try:
# 1. Load detection model
self.detection_model = YOLO(self.detection_model_path)
# 2. Load growth stage model
self.growth_model = YOLO(self.growth_model_path)
# 3. Load health classification model
self.load_health_classification_model()
return "β
All models loaded successfully!"
except Exception as e:
return f"β Error loading models: {e}"
def load_health_classification_model(self):
"""Load the health classification model (ViT)"""
checkpoint = torch.load(self.health_classification_model_path, map_location='cpu')
self.health_model_name = checkpoint['model_name']
self.health_class_names = checkpoint['class_names']
# Create health classification model
self.health_classification_model = timm.create_model(
self.health_model_name,
pretrained=False,
num_classes=len(self.health_class_names)
)
self.health_classification_model.load_state_dict(checkpoint['model_state_dict'])
self.health_classification_model.eval()
def detect_lettuce(self, image_path):
"""Stage 1: Detect lettuce in the image"""
results = self.detection_model(image_path, conf=self.detection_confidence)
detections = []
for result in results:
boxes = result.boxes
if boxes is not None:
for box in boxes:
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
conf = box.conf[0].cpu().numpy()
cls = int(box.cls[0].cpu().numpy())
detections.append({
'bbox': [int(x1), int(y1), int(x2), int(y2)],
'confidence': float(conf),
'class': cls,
'class_name': self.detection_model.names[cls] if hasattr(self.detection_model, 'names') else 'lettuce'
})
return detections
def classify_growth_stage(self, image_path, bbox):
"""Stage 2: Classify growth stage"""
try:
image = Image.open(image_path)
x1, y1, x2, y2 = bbox
# Add padding
padding = 20
x1 = max(0, x1 - padding)
y1 = max(0, y1 - padding)
x2 = min(image.width, x2 + padding)
y2 = min(image.height, y2 + padding)
# Crop and save temporary image
cropped_image = image.crop((x1, y1, x2, y2))
temp_crop_path = "temp_lettuce_crop.jpg"
cropped_image.save(temp_crop_path)
# Run growth stage classification
results = self.growth_model.predict(
source=temp_crop_path,
conf=self.growth_confidence,
save=False,
imgsz=640,
verbose=False
)
growth_results = []
for result in results:
boxes = result.boxes
if boxes is not None:
for box in boxes:
cls_id = int(box.cls[0])
conf = float(box.conf[0])
growth_stage = self.growth_model.names[cls_id]
growth_results.append({
'growth_stage': growth_stage,
'confidence': conf
})
# Clean up
if os.path.exists(temp_crop_path):
os.remove(temp_crop_path)
if growth_results:
best_growth = max(growth_results, key=lambda x: x['confidence'])
return best_growth['growth_stage'], best_growth['confidence']
else:
return "Unknown", 0.0
except Exception as e:
return "Error", 0.0
def classify_health(self, image, bbox):
"""Stage 3: Classify health status"""
try:
x1, y1, x2, y2 = bbox
cropped_image = image.crop((x1, y1, x2, y2))
input_tensor = self.health_classification_transform(cropped_image).unsqueeze(0)
with torch.no_grad():
output = self.health_classification_model(input_tensor)
probabilities = torch.softmax(output, dim=1)
confidence, predicted_idx = torch.max(probabilities, 1)
predicted_class = self.health_class_names[predicted_idx.item()]
confidence_score = confidence.item()
return predicted_class, confidence_score
except Exception as e:
return "Unknown", 0.0
def process_image_gradio(self, image, show_boxes, show_labels):
"""
Process image for Gradio interface
"""
if image is None:
return None, "Please upload an image first!", None, None
try:
# Save uploaded image temporarily
temp_image_path = "temp_uploaded_image.jpg"
image.save(temp_image_path)
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Stage 1: Detect lettuce
detections = self.detect_lettuce(temp_image_path)
if not detections:
# Clean up
if os.path.exists(temp_image_path):
os.remove(temp_image_path)
return image, "No lettuce detected in the image!", None, None
# Process each detection
complete_results = []
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
# Font setup
try:
font = ImageFont.truetype("arial.ttf", 16)
small_font = ImageFont.truetype("arial.ttf", 12)
except:
font = ImageFont.load_default()
small_font = ImageFont.load_default()
colors = ['#FF0000', '#0000FF', '#00FF00', '#FFA500', '#800080', '#FFFF00', '#00FFFF', '#FF00FF']
for i, detection in enumerate(detections):
bbox = detection['bbox']
det_conf = detection['confidence']
# Stage 2: Growth stage
growth_stage, growth_conf = self.classify_growth_stage(temp_image_path, bbox)
# Stage 3: Health status
health_status, health_conf = self.classify_health(image, bbox)
# Store results
result = {
'lettuce_id': i + 1,
'bbox': bbox,
'detection_confidence': det_conf,
'growth_stage': growth_stage,
'growth_confidence': growth_conf,
'health_status': health_status,
'health_confidence': health_conf
}
complete_results.append(result)
# Draw annotations if requested
if show_boxes or show_labels:
x1, y1, x2, y2 = bbox
color = colors[i % len(colors)]
if show_boxes:
# Draw bounding box
draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
if show_labels:
# Create label
label_lines = [
f"Lettuce {i+1}",
f"{growth_stage}",
f"{health_status}",
f"{health_conf:.2f}"
]
# Calculate label size
max_width = 0
total_height = 0
for line in label_lines:
bbox_text = draw.textbbox((0, 0), line, font=small_font)
line_width = bbox_text[2] - bbox_text[0]
line_height = bbox_text[3] - bbox_text[1]
max_width = max(max_width, line_width)
total_height += line_height + 2
# Position label
label_y = y1 - total_height - 8
if label_y < 0:
label_y = y2 + 4
# Draw label background
draw.rectangle([x1, label_y, x1 + max_width + 8, label_y + total_height + 4],
fill=color, outline=None)
# Draw label text
current_y = label_y + 2
for line in label_lines:
draw.text((x1 + 4, current_y), line, fill='white', font=small_font)
bbox_text = draw.textbbox((0, 0), line, font=small_font)
current_y += (bbox_text[3] - bbox_text[1]) + 2
# Clean up
if os.path.exists(temp_image_path):
os.remove(temp_image_path)
# Create results summary
summary = self.create_results_summary(complete_results)
# Create detailed results table
results_df = self.create_results_dataframe(complete_results)
return annotated_image, summary, results_df, complete_results
except Exception as e:
return None, f"Error processing image: {str(e)}", None, None
def create_results_summary(self, results):
"""Create a formatted summary of results"""
if not results:
return "No results to display"
summary = f"**LETTUCE ANALYSIS RESULTS**\n\n"
summary += f"**Summary:**\n"
summary += f"- Total lettuce detected: **{len(results)}**\n"
# Growth stages summary
growth_stages = [r['growth_stage'] for r in results]
growth_counts = {stage: growth_stages.count(stage) for stage in set(growth_stages)}
summary += f"- Growth stages: {dict(growth_counts)}\n"
# Health status summary
health_statuses = [r['health_status'] for r in results]
health_counts = {status: health_statuses.count(status) for status in set(health_statuses)}
summary += f"- Health statuses: {dict(health_counts)}\n\n"
# Detailed results
summary += f"π **Detailed Results:**\n\n"
for result in results:
summary += f"**Lettuce {result['lettuce_id']}:**\n"
summary += f"- Growth Stage: {result['growth_stage']} ({result['growth_confidence']:.3f})\n"
summary += f"- Health Status: {result['health_status']} ({result['health_confidence']:.3f})\n"
summary += f"- Location: {result['bbox']}\n\n"
return summary
def create_results_dataframe(self, results):
"""Create a pandas DataFrame for results table"""
if not results:
return pd.DataFrame()
df_data = []
for result in results:
df_data.append({
'Lettuce ID': result['lettuce_id'],
'Growth Stage': result['growth_stage'],
'Growth Confidence': f"{result['growth_confidence']:.3f}",
'Health Status': result['health_status'],
'Health Confidence': f"{result['health_confidence']:.3f}",
'Detection Confidence': f"{result['detection_confidence']:.3f}",
'Bounding Box': str(result['bbox'])
})
return pd.DataFrame(df_data)
# Initialize the pipeline
try:
pipeline = GradioLettuceAnalysisPipeline(
detection_model_path='detection.pt',
growth_model_path='growth_detection.pt',
health_classification_model_path='vit_lettuce_classifier_vit_small_patch16_224.pth'
)
model_status = "All models loaded successfully!"
except Exception as e:
model_status = f"Error loading models: {e}"
pipeline = None
def process_image_wrapper(image, show_boxes, show_labels):
"""Wrapper function for Gradio interface"""
if pipeline is None:
return None, "Models not loaded properly!", None
return pipeline.process_image_gradio(image, show_boxes, show_labels)
def download_results(results):
"""Create downloadable results"""
if not results:
return None
# Create detailed JSON report
report = {
'timestamp': datetime.now().isoformat(),
'total_lettuce_detected': len(results),
'results': results,
'summary': {
'growth_stages': {},
'health_statuses': {}
}
}
# Add summary statistics
growth_stages = [r['growth_stage'] for r in results]
health_statuses = [r['health_status'] for r in results]
for stage in set(growth_stages):
report['summary']['growth_stages'][stage] = growth_stages.count(stage)
for status in set(health_statuses):
report['summary']['health_statuses'][status] = health_statuses.count(status)
# Save to JSON file
filename = f"lettuce_analysis_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
with open(filename, 'w') as f:
json.dump(report, f, indent=2)
return filename
# Custom CSS for styling and logo
custom_css = """
.logo-container {
text-align: center;
margin-bottom: 20px;
}
.logo-container img {
max-height: 100px;
width: auto;
}
.company-header {
text-align: center;
margin-bottom: 30px;
padding: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 10px;
color: white;
}
.analyze-button {
background: linear-gradient(45deg, #4CAF50, #45a049) !important;
color: white !important;
border: none !important;
padding: 15px 30px !important;
font-size: 16px !important;
font-weight: bold !important;
border-radius: 8px !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
}
.analyze-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
}
.settings-container {
background: #f8f9fa;
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
}
.footer-info {
background: #f1f3f4;
padding: 20px;
border-radius: 10px;
margin-top: 20px;
}
"""
# Create Gradio interface
with gr.Blocks(title="Lettuce Analysis Pipeline", theme=gr.themes.Soft(), css=custom_css) as demo:
# Company Header with Logo
with gr.Row():
gr.HTML("""
<div class="company-header"><div class="logo-container">
<img src="./GB_logo.jpg" alt="Garden Of Babylon" />
</div>
<h1>Advanced Lettuce Analysis Platform</h1>
<p>Powered by AI β’ Precision Agriculture Solutions</p>
</div>
""")
# Main content
# gr.Markdown("""## Professional Lettuce Analysis Pipeline Our advanced AI system performs comprehensive lettuce analysis in three automated stages: - **Detection**: Automatically locates lettuce in your images - **Growth Stage Classification**: Determines the growth stage of each lettuce plant- **Health Assessment**: Evaluates the health condition of each plant Simply upload an image and let our AI do the rest!""")
# Model status
gr.Markdown(f"**System Status:** {model_status}")
with gr.Row():
# Left column - Input
with gr.Column(scale=1):
gr.Markdown("## Upload Image")
# Image input
input_image = gr.Image(
type="pil",
label="Upload Lettuce Image",
sources=["upload"],
interactive=True,
height=300
)
# Simplified settings
with gr.Group():
gr.Markdown("### Display Options")
with gr.Row():
show_boxes = gr.Checkbox(
label="Show Bounding Boxes",
value=True
)
show_labels = gr.Checkbox(
label="Show Labels",
value=True
)
# Process button
process_btn = gr.Button(
"π Analyze Lettuce",
variant="primary",
size="lg",
elem_classes="analyze-button"
)
# Info box
#gr.Markdown("""<div class="settings-container"><h4>βΉοΈ Analysis Settings</h4><ul><li><strong>Detection Confidence:</strong> Optimized at 50%</li><li><strong>Growth Classification:</strong> Optimized at 25%</li><li><strong>Processing Time:</strong> ~5-15 seconds per image</li></ul></div>""")
# Right column - Output
with gr.Column(scale=2):
gr.Markdown("## Analysis Results")
# Output image
output_image = gr.Image(
label="Analysis Results",
type="pil",
interactive=False,
height=400
)
# Results summary
results_summary = gr.Markdown(
label="Analysis Summary",
value="Upload an image and click 'Analyze Lettuce' to see results here."
)
# Results table
gr.Markdown("##Detailed Results")
results_table = gr.Dataframe(
label="Comprehensive Analysis Data",
interactive=False,
wrap=True
)
# Download section
with gr.Row():
with gr.Column(scale=1):
download_btn = gr.Button("Download Results (JSON)", variant="secondary")
with gr.Column(scale=2):
download_file = gr.File(label="Download Analysis Report", visible=False)
# Hidden state to store results
results_state = gr.State()
# Event handlers
process_btn.click(
fn=process_image_wrapper,
inputs=[input_image, show_boxes, show_labels],
outputs=[output_image, results_summary, results_table, results_state]
)
download_btn.click(
fn=download_results,
inputs=[results_state],
outputs=[download_file]
).then(
lambda: gr.update(visible=True),
outputs=[download_file]
)
# Footer
gr.HTML("""
<div class="footer-info">
<h3>π§ System Features</h3>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 20px;">
<div>
<h4>Precision Detection</h4>
<p>Advanced YOLO-based detection with optimized confidence thresholds</p>
</div>
<div>
<h4> Growth Analysis</h4>
<p>Multi-stage classification for accurate growth assessment</p>
</div>
<div>
<h4>Health Monitoring</h4>
<p>Vision Transformer (ViT) powered health status evaluation</p>
</div>
<div>
<h4>Comprehensive Reports</h4>
<p>Detailed analysis with downloadable JSON reports</p>
</div>
</div>
<hr style="margin: 20px 0;">
<p style="text-align: center; color: #666;">
<strong>Developed for Precision Agriculture</strong> |
Optimized confidence thresholds for maximum accuracy |
Support for multiple lettuce detection
</p>
</div>
""")
# Launch the app
if __name__ == "__main__":
demo.launch() |