solver_model_path=$1 questioner_model_path=$2 save_path=$3 echo $STORAGE_PATH echo "start train questioner $questioner_model_path $save_path" bash vllm_service_init/start.sh $solver_model_path & CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m verl.trainer.main \ config=examples/config.yaml \ data.max_response_length=4096 \ worker.actor.model.model_path=$questioner_model_path \ trainer.experiment_name=$save_path \ trainer.save_checkpoint_path=${STORAGE_PATH}/models/$save_path \ trainer.total_epochs=1000 \ worker.reward.reward_function=./examples/reward_function/caller.py:compute_score \ trainer.val_freq=-1 \ trainer.n_gpus_per_node=4 \ data.format_prompt=./examples/format_prompt/questioner.jinja \ worker.rollout.n=16 \ worker.actor.global_batch_size=4 \ worker.actor.micro_batch_size_per_device_for_update=1 \ worker.actor.micro_batch_size_per_device_for_experience=1 \ trainer.max_steps=11 # python gpu_burn.py pkill python sleep 1 python scripts/model_merger.py --local_dir ${STORAGE_PATH}/models/$save_path/global_step_10/actor