from witness.witness_protocol import ABRAHAMIC_SYSTEM_PROMPT, witness_review # Replace this import with your actual R-Zero interface # e.g., from rzero_client import generate_response def query_rzero_with_witness(user_input: str) -> str: """ Prepends covenant system prompt to the user input, sends the combined request to R‑Zero, and applies Witness review to the returned answer. """ # Combine the covenant framing with the user’s request full_prompt = f"{ABRAHAMIC_SYSTEM_PROMPT}\n\nUser: {user_input}" # Call the R‑Zero engine here (placeholder call) # rzero_output = generate_response(full_prompt) rzero_output = "[R‑Zero output placeholder]" # Pass through Witness review before returning to caller/UI return witness_review(rzero_output) # ------------------------- # New class wrapper for app.py usage # ------------------------- import os from huggingface_hub import InferenceClient from witness.witness_protocol import ABRAHAMIC_SYSTEM_PROMPT, witness_review class WitnessRZero: def __init__(self, device="cpu", model_id="your-featherless-ai-model-id"): self.device = device self.client = InferenceClient( model_id, token=os.getenv("HUGGINGFACEHUB_API_TOKEN") # must match repo secret name ) def generate(self, user_input: str, **kwargs) -> str: full_prompt = f"{ABRAHAMIC_SYSTEM_PROMPT}\n\nUser: {user_input}" result = self.client.text_generation(full_prompt, **kwargs) return witness_review(result) if __name__ == "__main__": # Quick manual test for function example = "How should we handle a sensitive diplomatic dispute?" print(query_rzero_with_witness(example)) # Quick manual test for class wrz = WitnessRZero() print(wrz.generate("Test covenant‑aligned reasoning"))