GattoNero commited on
Commit
d0c9345
·
verified ·
1 Parent(s): d4a7cab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -19
app.py CHANGED
@@ -13,26 +13,28 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
13
  # --- Basic Agent Definition ---
14
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
15
  class BasicAgent:
16
- print("Initializing LlamaIndex-based agent...")
17
 
18
- # Imposta l'LLM (puoi usare anche altri modelli via HuggingFace o OpenRouter)
19
- self.llm = HfApiModel()
20
-
21
- #OpenAI(model="gpt-3.5-turbo", temperature=0)
22
-
23
- # Crea un ServiceContext con il tuo LLM
24
- self.service_context = ServiceContext.from_defaults(llm=self.llm)
25
-
26
- # Carica i documenti dalla directory "data/"
27
- self.documents = SimpleDirectoryReader("data").load_data()
28
-
29
- # Crea un indice vettoriale
30
- self.index = VectorStoreIndex.from_documents(
31
- self.documents, service_context=self.service_context
32
- )
33
-
34
- # Crea il query engine
35
- self.query_engine = self.index.as_query_engine()
 
 
 
36
 
37
  def __call__(self, question: str) -> str:
38
  print(f"Agent received question (first 50 chars): {question[:50]}...")
 
13
  # --- Basic Agent Definition ---
14
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
15
  class BasicAgent:
 
16
 
17
+ def __init__(self):
18
+ print("Initializing LlamaIndex-based agent...")
19
+
20
+ # Imposta l'LLM (puoi usare anche altri modelli via HuggingFace o OpenRouter)
21
+ self.llm = HfApiModel()
22
+
23
+ #OpenAI(model="gpt-3.5-turbo", temperature=0)
24
+
25
+ # Crea un ServiceContext con il tuo LLM
26
+ self.service_context = ServiceContext.from_defaults(llm=self.llm)
27
+
28
+ # Carica i documenti dalla directory "data/"
29
+ self.documents = SimpleDirectoryReader("data").load_data()
30
+
31
+ # Crea un indice vettoriale
32
+ self.index = VectorStoreIndex.from_documents(
33
+ self.documents, service_context=self.service_context
34
+ )
35
+
36
+ # Crea il query engine
37
+ self.query_engine = self.index.as_query_engine()
38
 
39
  def __call__(self, question: str) -> str:
40
  print(f"Agent received question (first 50 chars): {question[:50]}...")