Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -13,26 +13,28 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
13 |
# --- Basic Agent Definition ---
|
14 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
15 |
class BasicAgent:
|
16 |
-
print("Initializing LlamaIndex-based agent...")
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
def __call__(self, question: str) -> str:
|
38 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
|
13 |
# --- Basic Agent Definition ---
|
14 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
15 |
class BasicAgent:
|
|
|
16 |
|
17 |
+
def __init__(self):
|
18 |
+
print("Initializing LlamaIndex-based agent...")
|
19 |
+
|
20 |
+
# Imposta l'LLM (puoi usare anche altri modelli via HuggingFace o OpenRouter)
|
21 |
+
self.llm = HfApiModel()
|
22 |
+
|
23 |
+
#OpenAI(model="gpt-3.5-turbo", temperature=0)
|
24 |
+
|
25 |
+
# Crea un ServiceContext con il tuo LLM
|
26 |
+
self.service_context = ServiceContext.from_defaults(llm=self.llm)
|
27 |
+
|
28 |
+
# Carica i documenti dalla directory "data/"
|
29 |
+
self.documents = SimpleDirectoryReader("data").load_data()
|
30 |
+
|
31 |
+
# Crea un indice vettoriale
|
32 |
+
self.index = VectorStoreIndex.from_documents(
|
33 |
+
self.documents, service_context=self.service_context
|
34 |
+
)
|
35 |
+
|
36 |
+
# Crea il query engine
|
37 |
+
self.query_engine = self.index.as_query_engine()
|
38 |
|
39 |
def __call__(self, question: str) -> str:
|
40 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|