Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -22,7 +22,7 @@ logging.getLogger().setLevel(logging.DEBUG) # imposta il livello di log a DEBUG
|
|
22 |
|
23 |
class BasicAgent:
|
24 |
def __init__(self):
|
25 |
-
print("Initializing LlamaIndex-based agent...")
|
26 |
|
27 |
# Leggi la chiave OpenAI dall'ambiente
|
28 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
@@ -49,8 +49,8 @@ class BasicAgent:
|
|
49 |
|
50 |
# Prepara il query engine
|
51 |
self.query_engine = self.index.as_query_engine()
|
52 |
-
print("Agent ready.")
|
53 |
-
|
54 |
def __call__(self, question: str) -> str:
|
55 |
print(f"Received question: {question[:50]}...")
|
56 |
response = self.query_engine.query(question)
|
@@ -62,85 +62,94 @@ class BasicAgent:
|
|
62 |
return str(response)
|
63 |
'''
|
64 |
|
65 |
-
def __call__(self, question: str, context=None) -> str:
|
66 |
-
if isinstance(context, str):
|
67 |
-
#prompt = f"{context}\n\nDomanda: {question}"
|
68 |
-
response = self.query_engine.query(question)
|
69 |
-
# Stampa ragionamento interno
|
70 |
-
print("Query response object:", response)
|
71 |
-
print("Response text:", str(response))
|
72 |
-
return response.text
|
73 |
-
|
74 |
-
elif context and hasattr(context, "read"): # file immagine o audio
|
75 |
-
file_bytes = context.read()
|
76 |
-
filename = context.name
|
77 |
-
|
78 |
-
if filename.endswith((".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif")):
|
79 |
-
print("coso entrato in video file:", filename)
|
80 |
-
image = Image.open(io.BytesIO(file_bytes))
|
81 |
-
response = self.query_engine.query(
|
82 |
-
messages=[
|
83 |
-
{"role": "user", "content": [
|
84 |
-
{"type": "text", "text": question},
|
85 |
-
{"type": "image_url", "image_url": image}
|
86 |
-
]}
|
87 |
-
]
|
88 |
-
)
|
89 |
-
return response.choices[0].message.content
|
90 |
-
|
91 |
-
elif filename.endswith((".mp3", ".wav", ".ogg")):
|
92 |
-
print("coso entrato in audio file:", filename)
|
93 |
-
response = self.query_engine.query(
|
94 |
-
messages=[
|
95 |
-
{"role": "user", "content": [
|
96 |
-
{"type": "text", "text": question},
|
97 |
-
{"type": "audio_url", "audio_url": file_bytes}
|
98 |
-
]}
|
99 |
-
]
|
100 |
-
)
|
101 |
-
return response.choices[0].message.content
|
102 |
-
|
103 |
-
else:
|
104 |
-
print("coso entrato in else")
|
105 |
-
response = self.llm.complete(question)
|
106 |
-
return response.text
|
107 |
|
108 |
-
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
file_content = f.read()
|
121 |
-
elif suffix in [".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif", ".mp3", ".wav", ".ogg"]:
|
122 |
-
# immagini/audio li gestiamo come path da passare al modello
|
123 |
-
file_content = uploaded_file
|
124 |
-
else:
|
125 |
-
return "Formato file non supportato."
|
126 |
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
129 |
|
130 |
-
gr.Interface(
|
131 |
-
fn=answer_with_media,
|
132 |
-
inputs=[
|
133 |
-
gr.Textbox(label="Domanda"),
|
134 |
-
gr.File(label="Carica file (testo, immagine o audio)")
|
135 |
-
],
|
136 |
-
outputs=gr.Textbox(label="Risposta")
|
137 |
-
).launch()
|
138 |
|
139 |
|
140 |
-
'''
|
141 |
|
142 |
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
# (Keep Constants as is)
|
145 |
# --- Constants ---
|
146 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
22 |
|
23 |
class BasicAgent:
|
24 |
def __init__(self):
|
25 |
+
print("coso Initializing LlamaIndex-based agent...")
|
26 |
|
27 |
# Leggi la chiave OpenAI dall'ambiente
|
28 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
|
49 |
|
50 |
# Prepara il query engine
|
51 |
self.query_engine = self.index.as_query_engine()
|
52 |
+
print("coso Agent ready.")
|
53 |
+
'''
|
54 |
def __call__(self, question: str) -> str:
|
55 |
print(f"Received question: {question[:50]}...")
|
56 |
response = self.query_engine.query(question)
|
|
|
62 |
return str(response)
|
63 |
'''
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
def __call__(self, question: str) -> str:
|
67 |
+
print(f"coso Received question: {question[:100]}")
|
68 |
|
69 |
+
# Prova a decodificare JSON
|
70 |
+
try:
|
71 |
+
q_data = json.loads(question)
|
72 |
+
except json.JSONDecodeError:
|
73 |
+
q_data = {"question": question}
|
74 |
+
|
75 |
+
text = q_data.get("question", "")
|
76 |
+
file_info = q_data.get("file")
|
77 |
+
|
78 |
+
# Se è presente un file, gestiscilo
|
79 |
+
if file_info:
|
80 |
+
file_name = file_info.get("name", "")
|
81 |
+
file_data = file_info.get("data", "")
|
82 |
+
|
83 |
+
if file_name.endswith((".png", ".jpg", ".jpeg")):
|
84 |
+
print("coso Image file detected, processing with GPT-4o")
|
85 |
+
image = self._load_image(file_data)
|
86 |
+
response = self._ask_gpt4o_with_image(image, text)
|
87 |
+
return response
|
88 |
+
|
89 |
+
elif file_name.endswith(".wav") or file_name.endswith(".mp3"):
|
90 |
+
print("coso Audio file detected, processing with Whisper")
|
91 |
+
audio_bytes = self._load_bytes(file_data)
|
92 |
+
transcription = self._transcribe_audio(audio_bytes)
|
93 |
+
return self._ask_gpt4o(transcription)
|
94 |
+
|
95 |
+
elif file_name.endswith(".txt"):
|
96 |
+
print("coso Text file detected")
|
97 |
+
text_content = self._load_text(file_data)
|
98 |
+
return self._ask_gpt4o(text_content)
|
99 |
+
|
100 |
+
# Altrimenti gestisci solo testo
|
101 |
+
return self._ask_gpt4o(text)
|
102 |
+
|
103 |
+
def _ask_gpt4o(self, text: str) -> str:
|
104 |
+
messages = [{"role": "user", "content": text}]
|
105 |
+
response = self.client.chat.completions.create(model="gpt-4o-mini", messages=messages)
|
106 |
+
return response.choices[0].message.content.strip()
|
107 |
+
|
108 |
+
def _ask_gpt4o_with_image(self, image: Image.Image, question: str) -> str:
|
109 |
+
buffered = BytesIO()
|
110 |
+
image.save(buffered, format="PNG")
|
111 |
+
buffered.seek(0)
|
112 |
+
image_bytes = buffered.read()
|
113 |
+
|
114 |
+
response = self.client.chat.completions.create(
|
115 |
+
model="gpt-4o-mini",
|
116 |
+
messages=[{
|
117 |
+
"role": "user",
|
118 |
+
"content": [
|
119 |
+
{"type": "text", "text": question},
|
120 |
+
{"type": "image_url", "image_url": {"url": "data:image/png;base64," + base64.b64encode(image_bytes).decode()}}
|
121 |
+
]
|
122 |
+
}]
|
123 |
+
)
|
124 |
+
return response.choices[0].message.content.strip()
|
125 |
|
126 |
+
def _transcribe_audio(self, audio_bytes: bytes) -> str:
|
127 |
+
audio_file = BytesIO(audio_bytes)
|
128 |
+
transcription = self.client.audio.transcriptions.create(model="whisper-1", file=audio_file)
|
129 |
+
return transcription.text.strip()
|
130 |
|
131 |
+
def _load_image(self, data: str) -> Image.Image:
|
132 |
+
return Image.open(BytesIO(base64.b64decode(data)))
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
def _load_bytes(self, data: str) -> bytes:
|
135 |
+
return base64.b64decode(data)
|
136 |
+
|
137 |
+
def _load_text(self, data: str) -> str:
|
138 |
+
return base64.b64decode(data).decode("utf-8")
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
|
|
|
142 |
|
143 |
|
144 |
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
# (Keep Constants as is)
|
154 |
# --- Constants ---
|
155 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|