File size: 17,195 Bytes
a4bcff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024572
a4bcff0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
# -*- coding: utf-8 -*-
"""app.py

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1QIEwA7FDPNIgdUKfLyRF4K3Im9CjkadN

Logistic Map Equation: x
n+1
​
 =rβ‹…x
n
​
 β‹…(1βˆ’x
n
​
 )

- x_n is the current state (a number between 0 and 1).

- x_{n+1} is the next value in the sequence.

- r is the growth rate parameter.

This block:

- Introduces the logistic map function

- Lets us generate sequences with different r values

- Plots them to visually understand convergence, cycles, and chaos
"""

import numpy as np
import matplotlib.pyplot as plt
import random

# Define the logistic map function
def logistic_map(x0: float, r: float, n: int = 100) -> np.ndarray:
    """
    Generates a logistic map sequence.

    Args:
        x0 (float): Initial value (between 0 and 1).
        r (float): Growth rate parameter (between 0 and 4).
        n (int): Number of time steps.

    Returns:
        np.ndarray: Sequence of logistic map values.
    """
    seq = np.zeros(n)
    seq[0] = x0
    for i in range(1, n):
        seq[i] = r * seq[i - 1] * (1 - seq[i - 1])
    return seq

# Plot logistic map sequences for different r values
def plot_logistic_map_examples(x0: float = 0.51, n: int = 100):
    """
    Plots logistic map sequences for several r values to visualize behavior.

    Args:
        x0 (float): Initial value.
        n (int): Number of iterations.
    """
    r_values = [2.5, 3.2, 3.5, 3.9, 4.0]
    plt.figure(figsize=(12, 8))

    for i, r in enumerate(r_values, 1):
        x0_safe = random.uniform(0.11, 0.89)
        seq = logistic_map(x0, r, n)
        plt.subplot(3, 2, i)
        plt.plot(seq, label=f"r = {r}")
        plt.title(f"Logistic Map (r = {r})")
        plt.xlabel("Time Step")
        plt.ylabel("x")
        plt.grid(True)
        plt.legend()

    plt.tight_layout()
    plt.show()

# πŸ” Run the plot function to see different behaviors
plot_logistic_map_examples()

"""- Low r (e.g., 2.5) = stable

- Mid r (e.g., 3.3) = periodic

- High r (e.g., 3.8 – 4.0) = chaotic

Generate synthetic sequences using random r values

Label each sequence as:

- 0 = stable (low r)

- 1 = periodic (mid r)

- 2 = chaotic (high r)

Create a full dataset we can later feed into a classifier
"""

import random
from typing import Tuple, List

# Label assignment based on r value
def label_from_r(r: float) -> int:
    """
    Assigns a regime label based on the value of r.

    Args:
        r (float): Growth rate.

    Returns:
        int: Label (0 = stable, 1 = periodic, 2 = chaotic)
    """
    if r < 3.0:
        return 0  # Stable regime
    elif 3.0 <= r < 3.57:
        return 1  # Periodic regime
    else:
        return 2  # Chaotic regime

# Create one labeled sequence
def generate_labeled_sequence(n: int = 100) -> Tuple[np.ndarray, int]:
    """
    Generates a single logistic map sequence and its regime label.

    Args:
        n (int): Sequence length.

    Returns:
        Tuple: (sequence, label)
    """
    r = round(random.uniform(2.5, 4.0), 4)
    x0 = random.uniform(0.1, 0.9)
    sequence = logistic_map(x0, r, n)
    label = label_from_r(r)
    return sequence, label

# Generate a full dataset
def generate_dataset(num_samples: int = 1000, n: int = 100) -> Tuple[np.ndarray, np.ndarray]:
    """
    Generates a dataset of logistic sequences with regime labels.

    Args:
        num_samples (int): Number of sequences to generate.
        n (int): Length of each sequence.

    Returns:
        Tuple[np.ndarray, np.ndarray]: X (sequences), y (labels)
    """
    X, y = [], []

    for _ in range(num_samples):
        sequence, label = generate_labeled_sequence(n)
        X.append(sequence)
        y.append(label)

    return np.array(X), np.array(y)

# Example: Generate small dataset and view label counts
X, y = generate_dataset(num_samples=500, n=100)

# Check class distribution
import collections
print("Label distribution:", collections.Counter(y))

"""Used controlled r ranges to simulate different market regimes

Created 500 synthetic sequences (X) and regime labels (y)

Now we can visualize, split, and train on this dataset

Visualize:

- Randomly samples from X, y

- Plots sequences grouped by class (0 = stable, 1 = periodic, 2 = chaotic)

Helps us verify that the labels match the visual behavior
"""

import matplotlib.pyplot as plt
import numpy as np

# Helper: Plot N random sequences for a given class
def plot_class_samples(X: np.ndarray, y: np.ndarray, target_label: int, n_samples: int = 5):
    """
    Plots sample sequences from a specified class.

    Args:
        X (np.ndarray): Dataset of sequences.
        y (np.ndarray): Labels (0=stable, 1=periodic, 2=chaotic).
        target_label (int): Class to visualize.
        n_samples (int): Number of sequences to plot.
    """
    indices = np.where(y == target_label)[0]
    chosen = np.random.choice(indices, n_samples, replace=False)

    plt.figure(figsize=(12, 6))
    for i, idx in enumerate(chosen):
        plt.plot(X[idx], label=f"Sample {i+1}")

    regime_name = ["Stable", "Periodic", "Chaotic"][target_label]
    plt.title(f"{regime_name} Regime Samples (Label = {target_label})")
    plt.xlabel("Time Step")
    plt.ylabel("x")
    plt.grid(True)
    plt.legend()
    plt.show()

# View class 0 (stable)
plot_class_samples(X, y, target_label=0)

# View class 1 (periodic)
plot_class_samples(X, y, target_label=1)

# View class 2 (chaotic)
plot_class_samples(X, y, target_label=2)

"""Stable: Sequences that flatten out

Periodic: Repeating waveforms (2, 4, 8 points)

Chaotic: No repeating pattern, jittery

Each of these sequences looks completely different β€” even though they're all generated by the same equation.

No fixed pattern. No periodic rhythm. Just deterministic unpredictability.

But it's not random β€” it's chaotic: sensitive to initial conditions, governed by internal structure (nonlinear dynamics).

Split X, y into training and testing sets

Normalize (optional, but improves convergence)

Convert to PyTorch tensors

Create DataLoaders for training
"""

import torch
from torch.utils.data import TensorDataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# Step 1: Split the dataset
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, stratify=y, random_state=42
)

# Step 2: Normalize sequences (standardization: mean=0, std=1)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)   # Fit only on train
X_test_scaled = scaler.transform(X_test)

# Step 3: Convert to PyTorch tensors
X_train_tensor = torch.tensor(X_train_scaled, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train, dtype=torch.long)

X_test_tensor = torch.tensor(X_test_scaled, dtype=torch.float32)
y_test_tensor = torch.tensor(y_test, dtype=torch.long)

# Step 4: Create TensorDatasets and DataLoaders
batch_size = 64

train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
test_dataset = TensorDataset(X_test_tensor, y_test_tensor)

train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size)

"""This CNN will:

- Take a 1D time series (length 100)

- Apply temporal convolutions to learn patterns

- Use global pooling to summarize features

- Output one of 3 regime classes
"""

import torch.nn as nn
import torch.nn.functional as F

# 1D CNN model for sequence classification
class ChaosCNN(nn.Module):
    def __init__(self, input_length=100, num_classes=3):
        super(ChaosCNN, self).__init__()

        # Feature extractors
        self.conv1 = nn.Conv1d(in_channels=1, out_channels=32, kernel_size=5, padding=2)
        self.bn1 = nn.BatchNorm1d(32)

        self.conv2 = nn.Conv1d(in_channels=32, out_channels=64, kernel_size=5, padding=2)
        self.bn2 = nn.BatchNorm1d(64)

        # Global average pooling
        self.global_pool = nn.AdaptiveAvgPool1d(1)  # Outputs shape: (batch_size, channels, 1)

        # Final classifier
        self.fc = nn.Linear(64, num_classes)

    def forward(self, x):
        # x shape: (batch_size, sequence_length)
        x = x.unsqueeze(1)  # Add channel dim (batch_size, 1, sequence_length)

        x = F.relu(self.bn1(self.conv1(x)))  # (batch_size, 32, seq_len)
        x = F.relu(self.bn2(self.conv2(x)))  # (batch_size, 64, seq_len)

        x = self.global_pool(x).squeeze(2)   # (batch_size, 64)
        out = self.fc(x)                     # (batch_size, num_classes)
        return out

"""Conv1d:	Extracts local patterns across the time dimension

BatchNorm1d:	Stabilizes training and speeds up convergence

AdaptiveAvgPool1d:	Summarizes the sequence into global stats

Linear:	Final decision layer for 3-class classification
"""

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ChaosCNN().to(device)

# Define loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt

# Training function
def train_model(model, train_loader, test_loader, criterion, optimizer, device, epochs=15):
    train_losses, test_accuracies = [], []

    for epoch in range(epochs):
        model.train()
        running_loss = 0.0

        for X_batch, y_batch in train_loader:
            X_batch, y_batch = X_batch.to(device), y_batch.to(device)

            optimizer.zero_grad()
            outputs = model(X_batch)
            loss = criterion(outputs, y_batch)
            loss.backward()
            optimizer.step()

            running_loss += loss.item() * X_batch.size(0)

        avg_loss = running_loss / len(train_loader.dataset)
        train_losses.append(avg_loss)

        # Evaluation after each epoch
        model.eval()
        all_preds, all_labels = [], []

        with torch.no_grad():
            for X_batch, y_batch in test_loader:
                X_batch = X_batch.to(device)
                outputs = model(X_batch)
                preds = outputs.argmax(dim=1).cpu().numpy()
                all_preds.extend(preds)
                all_labels.extend(y_batch.numpy())

        acc = accuracy_score(all_labels, all_preds)
        test_accuracies.append(acc)

        print(f"Epoch {epoch+1}/{epochs} - Loss: {avg_loss:.4f} - Test Accuracy: {acc:.4f}")

    return train_losses, test_accuracies

# Train the model
train_losses, test_accuracies = train_model(
    model, train_loader, test_loader, criterion, optimizer, device, epochs=15
)

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)
plt.plot(train_losses, label="Train Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title("Training Loss Over Time")
plt.grid(True)

plt.subplot(1, 2, 2)
plt.plot(test_accuracies, label="Test Accuracy", color='green')
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.title("Test Accuracy Over Time")
plt.grid(True)

plt.tight_layout()
plt.show()

# Final performance evaluation
model.eval()
y_true, y_pred = [], []

with torch.no_grad():
    for X_batch, y_batch in test_loader:
        X_batch = X_batch.to(device)
        outputs = model(X_batch)
        preds = outputs.argmax(dim=1).cpu().numpy()
        y_pred.extend(preds)
        y_true.extend(y_batch.numpy())

# Confusion matrix
cm = confusion_matrix(y_true, y_pred)
labels = ["Stable", "Periodic", "Chaotic"]

plt.figure(figsize=(6, 5))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=labels, yticklabels=labels)
plt.title("Confusion Matrix")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()

# Classification report
print(classification_report(y_true, y_pred, target_names=labels))

"""Input an r value (between 2.5 and 4.0)

Generate a logistic map sequence

Feed it to your trained model

Predict the regime

Plot the sequence and overlay the prediction
"""

# Label map for decoding
label_map = {0: "Stable", 1: "Periodic", 2: "Chaotic"}

def predict_regime(r_value: float, model, scaler, device, sequence_length=100):
    """
    Generates a logistic sequence for a given r, feeds to model, and predicts regime.
    """
    assert 2.5 <= r_value <= 4.0, "r must be between 2.5 and 4.0"

    # Generate sequence
    x0 = np.random.uniform(0.1, 0.9)
    sequence = logistic_map(x0, r_value, sequence_length).reshape(1, -1)

    # Standardize using training scaler
    sequence_scaled = scaler.transform(sequence)

    # Convert to tensor
    sequence_tensor = torch.tensor(sequence_scaled, dtype=torch.float32).to(device)

    # Model inference
    model.eval()
    with torch.no_grad():
        output = model(sequence_tensor)
        pred_class = torch.argmax(output, dim=1).item()

    # Plot
    plt.figure(figsize=(10, 4))
    plt.plot(sequence.flatten(), label=f"r = {r_value}")
    plt.title(f"Predicted Regime: {label_map[pred_class]} (Class {pred_class})")
    plt.xlabel("Time Step")
    plt.ylabel("x")
    plt.grid(True)
    plt.legend()
    plt.show()

    return label_map[pred_class]

predict_regime(2.6, model, scaler, device)
predict_regime(3.3, model, scaler, device)
predict_regime(3.95, model, scaler, device)

import yfinance as yf
import numpy as np
import torch
import matplotlib.pyplot as plt
import gradio as gr

# --- Label map used by your model ---
label_map = {
    0: "Stable",
    1: "Periodic",
    2: "Chaotic"
}

# --- Fetch + Predict Function ---
def fetch_and_predict(ticker: str, interval: str, model, scaler, device):
    try:
        ticker = ticker.strip().upper()

        # Ensure enough data is fetched based on interval
        def get_valid_period(interval):
            if interval in ["1m", "2m", "5m", "15m", "30m", "60m", "90m"]:
                return "60d"   # yfinance limit for intraday
            elif interval == "1d":
                return "1y"
            elif interval == "1wk":
                return "2y"
            elif interval == "1mo":
                return "5y"
            else:
                return "1y"

        period = get_valid_period(interval)

        # Pull price data
        df = yf.download(ticker, period=period, interval=interval, progress=False)

        if df.empty or 'Close' not in df:
            return None, f"❌ Failed to load data for: {ticker} with interval {interval}"

        prices = df['Close'].dropna().values
        if len(prices) < 101:
            return None, f"⚠️ Not enough price points (only {len(prices)}) for interval: {interval}"

        # Compute log returns
        log_returns = np.diff(np.log(prices))
        log_returns = log_returns[~np.isnan(log_returns)]
        log_returns = log_returns[~np.isinf(log_returns)]

        if len(log_returns) < 100:
          pad_size = 100 - len(log_returns)
          padded_seq = np.pad(log_returns, (pad_size, 0), mode='constant', constant_values=np.mean(log_returns))
        else:
          padded_seq = log_returns[-100:]

        # Prepare input
        seq = log_returns[-100:].reshape(1, -1)
        seq_scaled = scaler.transform(padded_seq.reshape(1, -1))
        seq_tensor = torch.tensor(seq_scaled, dtype=torch.float32).to(device)

        # Model prediction
        model.eval()
        with torch.no_grad():
            output = model(seq_tensor)
            pred_class = torch.argmax(output, dim=1).item()
            regime = label_map[pred_class]

        # Plotting
        fig, axs = plt.subplots(2, 1, figsize=(8, 5))
        axs[0].plot(prices, label="Price")
        axs[0].set_title(f"{ticker.upper()} Price")
        axs[0].grid(True)

        axs[1].plot(log_returns, color='orange', label="Log Returns")
        axs[1].axhline(0, linestyle='--', color='grey', alpha=0.6)
        axs[1].set_title("Log Returns")
        axs[1].grid(True)

        plt.tight_layout()

        if pad_size > 0:
          return fig, f"Predicted Regime: {regime} (⚠️ Sequence padded with mean returns: {pad_size} points)"

    except Exception as e:
        return None, f"❌ Error: {str(e)}"

# --- Wrapper for Gradio Interface ---
def real_data_interface(ticker, interval):
    fig, result = fetch_and_predict(ticker, interval, model, scaler, device)
    if fig is None:
        return None, result
    return fig, result

# --- Real Data Interface Block ---
real_interface = gr.Interface(
    fn=real_data_interface,
    inputs=[
        gr.Textbox(label="Enter Stock Ticker (e.g., AAPL, TSLA)"),
        gr.Dropdown(
            choices=["1d", "1wk", "1mo", "30m", "60m"],
            value="1d",
            label="Select Interval"
        )
    ],
    outputs=[
        gr.Plot(label="Price + Return Sequence"),
        gr.Label(label="Predicted Regime")
    ],
    title="πŸ“ˆ Real-World Market Regime Classifier",
    description="Fetches stock data using yfinance and classifies the regime as Stable, Periodic, or Chaotic using your CNN model."
)

# --- Simulated Chaos Interface (assuming already defined elsewhere) ---
# interface = ...

# --- Final Gradio App with Tabs ---
gr.TabbedInterface(
    interface_list=[real_interface],
    tab_names=["πŸ”¬ Simulated Chaos (r)", "πŸ“ˆ Real Market Data"]
).launch()