Geraldine commited on
Commit
4e3844d
·
verified ·
1 Parent(s): 4d8b3f6

Update helpers.py

Browse files
Files changed (1) hide show
  1. helpers.py +145 -145
helpers.py CHANGED
@@ -1,146 +1,146 @@
1
- from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
2
- from sentence_transformers import SentenceTransformer
3
- import torch
4
- import torch.nn.functional as F
5
- from PIL import Image
6
- import requests
7
- import os
8
- import json
9
- import math
10
- import re
11
- import pandas as pd
12
- import numpy as np
13
- from omeka_s_api_client import OmekaSClient,OmekaSClientError
14
- from typing import List, Dict, Any, Union
15
- import io
16
- from dotenv import load_dotenv
17
-
18
- # env var
19
- load_dotenv(os.path.join(os.getcwd(), ".env"))
20
- HF_TOKEN = os.environ.get("HF_TOKEN")
21
-
22
- # Nomic vison model
23
- processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
24
- vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
25
-
26
- # Nomic text model
27
- text_model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True, token=HF_TOKEN)
28
-
29
- def image_url_to_pil(url: str, max_size=(512, 512)) -> Image:
30
- """
31
- Ex usage : image_blobs = df["image_url"].apply(image_url_to_pil).tolist()
32
- """
33
- response = requests.get(url, stream=True, timeout=5)
34
- response.raise_for_status()
35
- image = Image.open(io.BytesIO(response.content)).convert("RGB")
36
- image.thumbnail(max_size, Image.Resampling.LANCZOS)
37
- return image
38
-
39
- def generate_img_embed(images_urls, batch_size=20):
40
- """Generate image embeddings in batches to manage memory usage.
41
-
42
- Args:
43
- images_urls (list): List of image URLs
44
- batch_size (int): Number of images to process at once
45
- """
46
- all_embeddings = []
47
-
48
- for i in range(0, len(images_urls), batch_size):
49
- batch_urls = images_urls[i:i + batch_size]
50
- images = [image_url_to_pil(image_url) for image_url in batch_urls]
51
- inputs = processor(images, return_tensors="pt")
52
- img_emb = vision_model(**inputs).last_hidden_state
53
- img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1)
54
- all_embeddings.append(img_embeddings.detach().numpy())
55
-
56
- return np.vstack(all_embeddings)
57
-
58
- def generate_text_embed(sentences: List, batch_size=64):
59
- """Generate text embeddings in batches to manage memory usage.
60
-
61
- Args:
62
- sentences (List): List of text strings to encode
63
- batch_size (int): Number of sentences to process at once
64
- """
65
- all_embeddings = []
66
-
67
- for i in range(0, len(sentences), batch_size):
68
- batch_sentences = sentences[i:i + batch_size]
69
- embeddings = text_model.encode(batch_sentences)
70
- all_embeddings.append(embeddings)
71
-
72
- return np.vstack(all_embeddings)
73
-
74
- def add_concatenated_text_field_exclude_keys(item_dict, keys_to_exclude=None, text_field_key="text", pair_separator=" - "):
75
- if not isinstance(item_dict, dict):
76
- raise TypeError("Input must be a dictionary.")
77
- if keys_to_exclude is None:
78
- keys_to_exclude = set() # Default to empty set
79
- else:
80
- keys_to_exclude = set(keys_to_exclude) # Ensure it's a set for efficient lookup
81
-
82
- # Add the target text key to the exclusion set automatically
83
- keys_to_exclude.add(text_field_key)
84
-
85
- formatted_pairs = []
86
- for key, value in item_dict.items():
87
- # 1. Skip any key in the exclusion set
88
- if key in keys_to_exclude:
89
- continue
90
-
91
- # 2. Check for empty/invalid values (same logic as before)
92
- is_empty_or_invalid = False
93
- if value is None: is_empty_or_invalid = True
94
- elif isinstance(value, float) and math.isnan(value): is_empty_or_invalid = True
95
- elif isinstance(value, (str, list, tuple, dict)) and len(value) == 0: is_empty_or_invalid = True
96
-
97
- # 3. Format and add if valid
98
- if not is_empty_or_invalid:
99
- formatted_pairs.append(f"{str(key)}: {str(value)}")
100
-
101
- concatenated_text = f"search_document: {pair_separator.join(formatted_pairs)}"
102
- item_dict[text_field_key] = concatenated_text
103
- return item_dict
104
-
105
- def prepare_df_atlas(df: pd.DataFrame, id_col='id', images_col='images_urls'):
106
-
107
- # Drop completely empty columns
108
- #df = df.dropna(axis=1, how='all')
109
-
110
- # Fill remaining nulls with empty strings
111
- #df = df.fillna('')
112
-
113
- # Ensure ID column exists
114
- if id_col not in df.columns:
115
- df[id_col] = [f'{i}' for i in range(len(df))]
116
-
117
- # Ensure indexed field exists and is not empty
118
- #if indexed_col not in df.columns:
119
- # df[indexed_col] = ''
120
-
121
- #df[images_col] = df[images_col].apply(lambda x: [x[0]] if isinstance(x, list) and len(x) > 1 else x if isinstance(x, list) else [x])
122
- df[images_col] = df[images_col].apply(lambda x: x[0] if isinstance(x, list) else x)
123
-
124
- # Optional: force all to string (can help with weird dtypes)
125
- for col in df.columns:
126
- df[col] = df[col].astype(str)
127
-
128
- return df
129
-
130
- def remove_key_value_from_dict(list_of_dict, key_to_remove):
131
- new_list = []
132
- for dictionary in list_of_dict:
133
- new_dict = dictionary.copy() # Create a copy to avoid modifying the original list
134
- if key_to_remove in new_dict:
135
- del new_dict[key_to_remove]
136
- new_list.append(new_dict)
137
- return new_list
138
-
139
- def remove_key_value_from_dict(input_dict, key_to_remove='text'):
140
- if not isinstance(input_dict, dict):
141
- raise TypeError("Input must be a dictionary.")
142
-
143
- if key_to_remove in input_dict:
144
- del input_dict[key_to_remove]
145
-
146
  return input_dict
 
1
+ from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
2
+ from sentence_transformers import SentenceTransformer
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from PIL import Image
6
+ import requests
7
+ import os
8
+ import json
9
+ import math
10
+ import re
11
+ import pandas as pd
12
+ import numpy as np
13
+ from omeka_s_api_client import OmekaSClient,OmekaSClientError
14
+ from typing import List, Dict, Any, Union
15
+ import io
16
+ from dotenv import load_dotenv
17
+
18
+ # env var
19
+ load_dotenv(os.path.join(os.getcwd(), ".env"))
20
+ HF_TOKEN = os.environ.get("HF_TOKEN")
21
+
22
+ # Nomic vison model
23
+ processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
24
+ vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
25
+
26
+ # Nomic text model
27
+ text_model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True, token=HF_TOKEN)
28
+
29
+ def image_url_to_pil(url: str, max_size=(512, 512)) -> Image:
30
+ """
31
+ Ex usage : image_blobs = df["image_url"].apply(image_url_to_pil).tolist()
32
+ """
33
+ response = requests.get(url, stream=True, timeout=5)
34
+ response.raise_for_status()
35
+ image = Image.open(io.BytesIO(response.content)).convert("RGB")
36
+ image.thumbnail(max_size, Image.Resampling.LANCZOS)
37
+ return image
38
+
39
+ def generate_img_embed(images_urls, batch_size=20):
40
+ """Generate image embeddings in batches to manage memory usage.
41
+
42
+ Args:
43
+ images_urls (list): List of image URLs
44
+ batch_size (int): Number of images to process at once
45
+ """
46
+ all_embeddings = []
47
+
48
+ for i in range(0, len(images_urls), batch_size):
49
+ batch_urls = images_urls[i:i + batch_size]
50
+ images = [image_url_to_pil(image_url) for image_url in batch_urls]
51
+ inputs = processor(images, return_tensors="pt")
52
+ img_emb = vision_model(**inputs).last_hidden_state
53
+ img_embeddings = F.normalize(img_emb[:, 0], p=2, dim=1)
54
+ all_embeddings.append(img_embeddings.detach().numpy())
55
+
56
+ return np.vstack(all_embeddings)
57
+
58
+ def generate_text_embed(sentences: List, batch_size=64):
59
+ """Generate text embeddings in batches to manage memory usage.
60
+
61
+ Args:
62
+ sentences (List): List of text strings to encode
63
+ batch_size (int): Number of sentences to process at once
64
+ """
65
+ all_embeddings = []
66
+
67
+ for i in range(0, len(sentences), batch_size):
68
+ batch_sentences = sentences[i:i + batch_size]
69
+ embeddings = text_model.encode(batch_sentences)
70
+ all_embeddings.append(embeddings)
71
+
72
+ return np.vstack(all_embeddings)
73
+
74
+ def add_concatenated_text_field_exclude_keys(item_dict, keys_to_exclude=None, text_field_key="text", pair_separator=" - "):
75
+ if not isinstance(item_dict, dict):
76
+ raise TypeError("Input must be a dictionary.")
77
+ if keys_to_exclude is None:
78
+ keys_to_exclude = set() # Default to empty set
79
+ else:
80
+ keys_to_exclude = set(keys_to_exclude) # Ensure it's a set for efficient lookup
81
+
82
+ # Add the target text key to the exclusion set automatically
83
+ keys_to_exclude.add(text_field_key)
84
+
85
+ formatted_pairs = []
86
+ for key, value in item_dict.items():
87
+ # 1. Skip any key in the exclusion set
88
+ if key in keys_to_exclude:
89
+ continue
90
+
91
+ # 2. Check for empty/invalid values (same logic as before)
92
+ is_empty_or_invalid = False
93
+ if value is None: is_empty_or_invalid = True
94
+ elif isinstance(value, float) and math.isnan(value): is_empty_or_invalid = True
95
+ elif isinstance(value, (str, list, tuple, dict)) and len(value) == 0: is_empty_or_invalid = True
96
+
97
+ # 3. Format and add if valid
98
+ if not is_empty_or_invalid:
99
+ formatted_pairs.append(f"{str(key)}: {str(value)}")
100
+
101
+ concatenated_text = f"search_document: {pair_separator.join(formatted_pairs)}"
102
+ item_dict[text_field_key] = concatenated_text
103
+ return item_dict
104
+
105
+ def prepare_df_atlas(df: pd.DataFrame, id_col='id', images_col='images_urls'):
106
+
107
+ # Drop completely empty columns
108
+ #df = df.dropna(axis=1, how='all')
109
+
110
+ # Fill remaining nulls with empty strings
111
+ #df = df.fillna('')
112
+
113
+ # Ensure ID column exists
114
+ if id_col not in df.columns:
115
+ df[id_col] = [f'{i}' for i in range(len(df))]
116
+
117
+ # Ensure indexed field exists and is not empty
118
+ #if indexed_col not in df.columns:
119
+ # df[indexed_col] = ''
120
+
121
+ #df[images_col] = df[images_col].apply(lambda x: [x[0]] if isinstance(x, list) and len(x) > 1 else x if isinstance(x, list) else [x])
122
+ df[images_col] = df[images_col].apply(lambda x: x[0] if isinstance(x, list) else x)
123
+
124
+ # Optional: force all to string (can help with weird dtypes)
125
+ for col in df.columns:
126
+ df[col] = df[col].astype(str)
127
+
128
+ return df
129
+
130
+ def remove_key_value_from_dict(list_of_dict, key_to_remove):
131
+ new_list = []
132
+ for dictionary in list_of_dict:
133
+ new_dict = dictionary.copy() # Create a copy to avoid modifying the original list
134
+ if key_to_remove in new_dict:
135
+ del new_dict[key_to_remove]
136
+ new_list.append(new_dict)
137
+ return new_list
138
+
139
+ def remove_key_value_from_dict(input_dict, key_to_remove='text'):
140
+ if not isinstance(input_dict, dict):
141
+ raise TypeError("Input must be a dictionary.")
142
+
143
+ if key_to_remove in input_dict:
144
+ del input_dict[key_to_remove]
145
+
146
  return input_dict