Spaces:
Runtime error
Runtime error
File size: 1,380 Bytes
144449f 9f8712e 144449f 5eaa0c6 9f8712e a8fadd0 5eaa0c6 144449f 5eaa0c6 144449f 5eaa0c6 144449f 5eaa0c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
import tensorflow as tf
from tensorflow import keras
import numpy as np
from huggingface_hub import hf_hub_download
# 讛讜专讚转 讜讛讟注谞转 讛诪讜讚诇
model_path = hf_hub_download(
repo_id="GiladtheFixer/my_mnist_model",
filename="mnist_model.keras"
)
model = keras.models.load_model(model_path)
def predict_digit(sketch_data):
img = sketch_data["composite"]
# 诇拽讬讞转 注专讜抓 讛讗诇驻讗 讜讛讬驻讜讱 爪讘注讬诐
alpha_channel = img[..., 3]
img = alpha_channel / 255.0
# 砖讬谞讜讬 讙讜讚诇 诇-28x28
resized = tf.image.resize(
tf.expand_dims(img, -1),
[28, 28],
method='bilinear'
)
resized = tf.squeeze(resized)
# 讛讻谞转 讛拽诇讟 诇诪讜讚诇
input_data = resized.numpy().reshape(1, 28, 28)
# 讞讬讝讜讬
pred = model.predict(input_data, verbose=0)
return {str(i): float(pred[0][i]) for i in range(10)}
demo = gr.Interface(
fn=predict_digit,
inputs=[
gr.Sketchpad(
label="draw some digit",
height=400,
width=400,
brush=None,
interactive=True
)
],
outputs=gr.Label(num_top_classes=3),
title="MNIST_by Gilad",
description="draw some digit with brush or clear your board then click submit",
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch() |