File size: 6,896 Bytes
7e0d9e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""

Gokul Ramanan

runs_api.py

8/6/2025

Description: RUNS API for extracting data from the Top_85_International_Run_Scorers.csv

file based on various selection parameters.

"""

import pandas as pd

class RUNSAPI:

    def __init__(self):
        self.runs = None

    def load_runs(self, filename):
        """

            Load and preprocess the dataset from a CSV file.



            Parameters:

                filename (str): Path to the CSV file containing run statistics.



            Processing Steps:

                - Loads data into a pandas DataFrame.

                - Converts the 'Runs' column to numeric, coercing non-numeric

                entries to NaN.

                - Sorts the DataFrame by player name, format, and year for

                accurate cumulative calculations.



            Returns:

                None: Modifies the `self.runs` attribute in-place.

            """
        self.runs = pd.read_csv(filename)

        # Clean: Ensure 'Runs' is numeric
        self.runs["Runs"] = pd.to_numeric(self.runs["Runs"], errors="coerce")
        self.runs["Innings"] = pd.to_numeric(self.runs["Inns"], errors="coerce")
        self.runs["Not Outs"] = pd.to_numeric(self.runs["NO"], errors="coerce")
        self.runs["Balls Faced"] = pd.to_numeric(self.runs["BF"], errors="coerce")
        self.runs["Matches"] = pd.to_numeric(self.runs["Mat"], errors="coerce")
        self.runs["100s"] = pd.to_numeric(self.runs["100s"], errors="coerce")
        self.runs["50s"] = pd.to_numeric(self.runs["50s"], errors="coerce")

        # Clean: Sort for proper cumulative computation
        self.runs = self.runs.sort_values(by=["Name", "Format", "Year"])

    def apply_filters(self, formats=None, countries=None, year_range=None, top_n_players = None, player_select_value = None,

                      ranking_metric="Runs", career_length_slider = None, only_all_formats=False, not_all_formats=False):
        """

            Filter the dataset based on selected formats, countries, year range, and

            top N players by run total.

            Parameters:

                formats (list): List of formats to filter (e.g., ['odi', 'test']).

                countries (list): List of country names to include.

                year_range (list): [start_year, end_year] for filtering.

                top_n_players (int): Keep only top N run-scorers across filtered data.

            Returns:

                pd.DataFrame: Filtered and aggregated DataFrame with cumulative runs.

            """
        df = self.runs.copy()

        if formats:
            df = df[df["Format"].isin(formats)]

        if countries:
            df = df[df["Country"].isin(countries)]

        if year_range:
            start_year, end_year = year_range
            df = df[(df["Year"] >= start_year) & (df["Year"] <= end_year)]

        if career_length_slider:
            min_years, max_years = career_length_slider
            career_lengths = df.groupby("Name")["Year"].nunique()
            valid_players = career_lengths[(career_lengths >= min_years) & (career_lengths <= max_years)].index
            df = df[df["Name"].isin(valid_players)]

        if only_all_formats:
            player_format_counts = self.runs.groupby("Name")["Format"].nunique()
            eligible_players = player_format_counts[player_format_counts == 3].index
            df = df[df["Name"].isin(eligible_players)]

        if not_all_formats:
            player_format_counts = self.runs.groupby("Name")["Format"].nunique()
            eligible_players = player_format_counts[player_format_counts < 3].index
            df = df[df["Name"].isin(eligible_players)]

        df = df.groupby(["Name", "Year", "Country"], as_index=False).agg({"Runs": "sum", "Innings": "sum",
                                                                          "Not Outs": "sum", "Balls Faced": "sum",
                                                                          "Matches": "sum", "100s": "sum", "50s": "sum"})
        df = df.sort_values(by=["Name", "Year"])
        df["cumulative_matches"] = df.groupby("Name")["Matches"].cumsum()
        df["cumulative_100s"] = df.groupby("Name")["100s"].cumsum()
        df["cumulative_50s"] = df.groupby("Name")["50s"].cumsum()
        df["cumulative_format_runs"] = df.groupby("Name")["Runs"].cumsum()
        df["cumulative_innings"] = df.groupby("Name")["Innings"].cumsum()
        df["cumulative_NO"] = df.groupby("Name")["Not Outs"].cumsum()
        df["cumulative_format_BF"] = df.groupby("Name")["Balls Faced"].cumsum()

        df["cumulative_format_average"] = df["cumulative_format_runs"] / (df["cumulative_innings"] - df["cumulative_NO"])
        df["cumulative_SR"] = df.apply(
            lambda row: (row["cumulative_format_runs"] / row["cumulative_format_BF"]) * 100
            if pd.notnull(row["cumulative_format_BF"]) and row["cumulative_format_BF"] > 0
            else None,
            axis=1
        )

        df["Is_Prediction"] = df["Year"] == 2030

        df = df.sort_values(by=["Name", "Year"])
        df["Career Year"] = df.groupby("Name").cumcount()
        df.loc[df["Is_Prediction"], "Career Year"] = df.groupby("Name")["Career Year"].transform("max") + 5

        if player_select_value:
            df = df[df["Name"].isin(player_select_value)]
        elif top_n_players:
            if ranking_metric == "Runs":
                metric_series = df.groupby("Name")["Runs"].sum()
            elif ranking_metric == "Average":
                # Use final cumulative average for each player (latest year)
                last_year_df = df.sort_values(by=["Year"]).groupby("Name").tail(1)
                metric_series = last_year_df.set_index("Name")["cumulative_format_average"]
            else:
                raise ValueError(f"Unknown ranking_metric: {ranking_metric}")

            top_players = metric_series.sort_values(ascending=False).head(top_n_players).index
            df = df[df["Name"].isin(top_players)]

        # Calculate debut year for each player
        debut_years = df.groupby("Name")["Year"].min()
        df["Debut Year"] = df["Name"].map(debut_years)

        # Bin debut years into 5-year ranges
        def bin_debut_year(year):
            if pd.isnull(year):
                return "Unknown"
            start = int((year // 5) * 5)
            return f"{start}{start + 4}"

        df["Debut Bin"] = df["Debut Year"].apply(bin_debut_year)

        return df.reset_index()

def main():
    high_international_runs = RUNSAPI()
    high_international_runs.load_runs('Top_85_International_Run_Scorers.csv')

    filtered_df = high_international_runs.apply_filters()
    print(len(filtered_df["Name"].unique()))


if __name__ == "__main__":
    main()