File size: 5,702 Bytes
bf47026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# --- START OF FILE app.py ---

import sys
import os
import re
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
from dotenv import load_dotenv

# --- FIX: Add project root to Python's path ---
project_root = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, project_root)

# --- Updated Spaces import for Zero-GPU compatibility ---
try:
    import spaces
    print("'spaces' module imported successfully.")
except ImportError:
    print("Warning: 'spaces' module not found. Using dummy decorator for local execution.")
    class DummySpaces:
        def GPU(self, *args, **kwargs):
            def decorator(func):
                print(f"Note: Dummy @GPU decorator used for function '{func.__name__}'.")
                return func
            return decorator
    spaces = DummySpaces()

# --- Step 1: Hugging Face Authentication ---
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    raise ValueError("FATAL: Hugging Face token not found. Please set the HF_TOKEN environment variable.")
print("--- Logging in to Hugging Face Hub ---")
login(token=HF_TOKEN)

# --- Step 2: Initialize Model and Tokenizer ---
MODEL_NAME = "Gregniuki/ERNIE-4.5-0.3B-PT-Translator-EN-PL-EN"
print(f"--- Loading model from Hugging Face Hub: {MODEL_NAME} ---")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
print(f"--- Using device: {device}, dtype: {dtype} ---")

try:
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=dtype, trust_remote_code=True).to(device)
    model.eval()
    print("--- Model and Tokenizer Loaded Successfully ---")
except Exception as e:
    raise RuntimeError(f"FATAL: Could not load components. Error: {e}")

# --- Helper Functions ---
def chunk_text(text: str, max_size: int) -> list[str]:
    if not text: return []
    chunks, start_index = [], 0
    while start_index < len(text):
        end_index = start_index + max_size
        if end_index >= len(text):
            chunks.append(text[start_index:]); break
        split_pos = text.rfind('.', start_index, end_index)
        if split_pos != -1:
            chunk, start_index = text[start_index : split_pos + 1], split_pos + 1
        else:
            chunk, start_index = text[start_index:end_index], end_index
        chunks.append(chunk.strip())
    return [c for c in chunks if c]

def preprocess_text(text: str) -> str:
    """Intelligently cleans text by handling newlines."""
    if not text: return ""
    text = re.sub(r'\n{2,}', ' ', text)
    text = text.replace('\n', ' ')
    text = re.sub(r'\s{2,}', ' ', text)
    return text.strip()

# --- Step 3: Core Translation Function (DEFINITIVE METHOD: NO CONTEXT) ---
@spaces.GPU
@torch.no_grad()
def translate_with_chunks(input_text: str, chunk_size: int, progress=gr.Progress()) -> str:
    """
    Processes text by translating each chunk independently to ensure correctness
    and prevent any possibility of overlapping or translation errors.
    """
    progress(0, desc="Starting...")
    processed_text = preprocess_text(input_text)
    if not processed_text: return "Input text is empty. Please enter some text to translate."

    text_chunks = chunk_text(processed_text, chunk_size) if len(processed_text) > chunk_size else [processed_text]
    num_chunks = len(text_chunks)
    print(f"Processing {num_chunks} independent chunk(s).")

    all_results = []

    for i, chunk in enumerate(text_chunks):
        progress(0.1 + (i / num_chunks) * 0.8, desc=f"Translating chunk {i+1}/{num_chunks}")

        # Create a new, single-turn prompt for every chunk.
        # This is the only way to guarantee the model does not get confused.
        messages = [{"role": "user", "content": chunk}]
        prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        model_inputs = tokenizer([prompt], add_special_tokens=False, return_tensors="pt").to(device)

        generated_ids_tensor = model.generate(
            **model_inputs,
            max_new_tokens=2048,
            do_sample=True,
            temperature=0.7,
            top_p=0.95,
            top_k=50
        )

        input_token_len = model_inputs.input_ids.shape[1]
        output_ids = generated_ids_tensor[0][input_token_len:].tolist()
        final_translation_for_chunk = tokenizer.decode(output_ids, skip_special_tokens=True).strip()

        all_results.append(final_translation_for_chunk)
        print(f"Chunk {i+1} processed successfully.")

    progress(0.95, desc="Reassembling Results...")
    full_output = " ".join(all_results)
    progress(1.0, desc="Done!")
    return full_output

# --- Step 4: Create and Launch the Gradio App (Context Slider Removed) ---
print("\n--- Initializing Gradio Interface ---")
app = gr.Interface(
    fn=translate_with_chunks,
    inputs=[
        gr.Textbox(lines=15, label="Input Text", placeholder="Enter long text to process here..."),
        gr.Slider(
            minimum=256,
            maximum=2048,
            value=768,
            step=64,
            label="Character Chunk Size",
            info="Text will be split into chunks of this size for translation."
        )
    ],
    outputs=gr.Textbox(lines=15, label="Model Output", interactive=False),
    title="ERNIE 4.5 Text Translator",
    description="Processes long text by splitting it into independent chunks to ensure correct and reliable translation.",
    allow_flagging="never"
)

if __name__ == "__main__":
    app.queue().launch()