File size: 5,914 Bytes
24a0d01
82828b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33c8f1c
82828b4
 
 
 
33c8f1c
 
82828b4
 
33c8f1c
82828b4
 
 
 
 
 
 
 
 
 
 
33c8f1c
 
 
 
 
82828b4
 
 
 
24a0d01
 
 
 
 
 
 
 
82828b4
 
 
 
 
 
33c8f1c
82828b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33c8f1c
 
82828b4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# --- START OF FILE app.py ---

import sys
import os
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
from dotenv import load_dotenv

# --- FIX: Add project root to Python's path ---
project_root = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, project_root)

# --- Updated Spaces import for Zero-GPU compatibility ---
try:
    import spaces
    print("'spaces' module imported successfully.")
except ImportError:
    print("Warning: 'spaces' module not found. Using dummy decorator for local execution.")
    class DummySpaces:
        def GPU(self, *args, **kwargs):
            def decorator(func):
                print(f"Note: Dummy @GPU decorator used for function '{func.__name__}'.")
                return func
            return decorator
    spaces = DummySpaces()

# --- Step 1: Hugging Face Authentication ---
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")

if not HF_TOKEN:
    raise ValueError("FATAL: Hugging Face token not found. Please set the HF_TOKEN environment variable.")

print("--- Logging in to Hugging Face Hub ---")
login(token=HF_TOKEN)


# --- Step 2: Initialize Model and Tokenizer (Load Once on Startup) ---

MODEL_NAME = "Gregniuki/ERNIE-4.5-0.3B-PT-Translator-EN-PL-EN"

print(f"--- Loading model from Hugging Face Hub: {MODEL_NAME} ---")

# --- Device Setup (Zero GPU Support) ---
if torch.cuda.is_available():
    device = torch.device("cuda")
    print("GPU detected. Using CUDA.")
else:
    device = torch.device("cpu")
    print("No GPU detected. Using CPU.")

dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
print(f"--- Using dtype: {dtype} ---")

print(f"--- Loading tokenizer from Hub: {MODEL_NAME} ---")
try:
    tokenizer = AutoTokenizer.from_pretrained(
        MODEL_NAME,
        trust_remote_code=True
    )
    print("--- Tokenizer Loaded Successfully ---")
except Exception as e:
    raise RuntimeError(f"FATAL: Could not load tokenizer from the Hub. Error: {e}")

print(f"--- Loading Model with PyTorch from Hub: {MODEL_NAME} ---")
try:
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME,
        torch_dtype=dtype,
        trust_remote_code=True
    ).to(device)
    model.eval()
    print("--- Model Loaded Successfully ---")
except Exception as e:
    raise RuntimeError(f"FATAL: Could not load model from the Hub. Error: {e}")


# --- Helper function for chunking text (Unchanged) ---
def chunk_text(text: str, max_size: int) -> list[str]:
    """Splits text into chunks, trying to break at sentence endings."""
    if not text: return []
    chunks, start_index = [], 0
    while start_index < len(text):
        end_index = start_index + max_size
        if end_index >= len(text):
            chunks.append(text[start_index:])
            break
        split_pos = text.rfind('.', start_index, end_index)
        if split_pos != -1:
            chunk, start_index = text[start_index : split_pos + 1], split_pos + 1
        else:
            chunk, start_index = text[start_index:end_index], end_index
        chunks.append(chunk.strip())
    return [c for c in chunks if c]


# --- Step 3: Core Translation Function (REMOVED CONTEXT TO ENSURE CORRECTNESS) ---
@spaces.GPU
@torch.no_grad()
def translate_with_chunks(input_text: str, chunk_size: int, progress=gr.Progress()) -> str:
    """
    Processes text by translating each chunk independently. This prevents the model
    from incorrectly switching translation direction.
    """
    progress(0, desc="Starting...")
    print("--- Inference function with isolated chunks started ---")
    if not input_text or not input_text.strip():
        return "Input text is empty. Please enter some text to translate."

    progress(0.1, desc="Chunking Text...")
    text_chunks = chunk_text(input_text, chunk_size) if len(input_text) > chunk_size else [input_text]
    num_chunks = len(text_chunks)
    print(f"Processing {num_chunks} chunk(s).")

    all_results = []

    for i, chunk in enumerate(text_chunks):
        progress(0.2 + (i / num_chunks) * 0.7, desc=f"Translating chunk {i+1}/{num_chunks}")

        # Each chunk is treated as a new, single-turn conversation.
        # This prevents the model from getting confused by previous turns.
        messages = [{"role": "user", "content": chunk}]

        prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        model_inputs = tokenizer([prompt], add_special_tokens=False, return_tensors="pt").to(device)

        generated_ids = model.generate(
            **model_inputs,
            max_new_tokens=2048,
            do_sample=True,
            temperature=0.7,
            top_p=0.95,
            top_k=50
        )
        
        input_token_len = model_inputs.input_ids.shape[1]
        output_ids = generated_ids[0][input_token_len:].tolist()
        result_text = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
        
        all_results.append(result_text)
        print(f"Chunk {i+1} translated successfully.")

    progress(0.95, desc="Reassembling Results...")
    full_output = " ".join(all_results)

    progress(1.0, desc="Done!")
    return full_output

# --- Step 4: Create and Launch the Gradio App ---
print("\n--- Initializing Gradio Interface ---")

app = gr.Interface(
    fn=translate_with_chunks,
    inputs=[
        gr.Textbox(lines=15, label="Input Text", placeholder="Enter long text to process here..."),
        gr.Slider(minimum=128, maximum=1536, value=1024, step=64, label="Character Chunk Size")
    ],
    outputs=gr.Textbox(lines=15, label="Model Output", interactive=False),
    title="ERNIE 4.5 Text Translator",
    description="Processes long text by splitting it into independent chunks to ensure correct and reliable translation.",
    allow_flagging="never"
)

if __name__ == "__main__":
    app.queue().launch()