File size: 7,003 Bytes
5de8a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a42dcd
 
5de8a23
 
 
 
 
 
 
 
 
9a42dcd
 
 
5de8a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c811ef4
 
5de8a23
 
c811ef4
5de8a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66d93c5
5de8a23
66d93c5
5de8a23
 
66d93c5
5de8a23
66d93c5
5de8a23
 
 
 
 
 
66d93c5
5de8a23
 
 
 
 
 
 
 
 
 
 
 
 
 
c811ef4
66d93c5
 
5de8a23
 
66d93c5
5de8a23
66d93c5
5de8a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# --- START OF FILE app3.py ---

import sys
import os
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
from dotenv import load_dotenv

# --- FIX: Add project root to Python's path ---
project_root = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, project_root)

# --- Updated Spaces import for Zero-GPU compatibility ---
try:
    import spaces
    print("'spaces' module imported successfully.")
except ImportError:
    print("Warning: 'spaces' module not found. Using dummy decorator for local execution.")
    class DummySpaces:
        def GPU(self, *args, **kwargs):
            def decorator(func):
                print(f"Note: Dummy @GPU decorator used for function '{func.__name__}'.")
                return func
            return decorator
    spaces = DummySpaces()

# --- Step 1: Hugging Face Authentication ---
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")

if not HF_TOKEN:
    raise ValueError("FATAL: Hugging Face token not found. Please set the HF_TOKEN environment variable.")

print("--- Logging in to Hugging Face Hub ---")
login(token=HF_TOKEN)


# --- Step 2: Initialize Model and Tokenizer (Load Once on Startup) ---

MODEL_NAME = "Gregniuki/ERNIE-4.5-0.3B-PT-Translator-EN-PL-EN"
print(f"--- Loading model from Hugging Face Hub: {MODEL_NAME} ---")

# --- Device Setup (Zero GPU Support) ---
if torch.cuda.is_available():
    device = torch.device("cuda")
    print("GPU detected. Using CUDA.")
else:
    device = torch.device("cpu")
    print("No GPU detected. Using CPU.")

dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
print(f"--- Using dtype: {dtype} ---")

print(f"--- Loading tokenizer from Hub: {MODEL_NAME} ---")
try:
    tokenizer = AutoTokenizer.from_pretrained(
        MODEL_NAME
 #       trust_remote_code=True
    )
    print("--- Tokenizer Loaded Successfully ---")
except Exception as e:
    raise RuntimeError(f"FATAL: Could not load tokenizer from the Hub. Error: {e}")

print(f"--- Loading Model with PyTorch from Hub: {MODEL_NAME} ---")
try:
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME,
        torch_dtype=torch.bfloat16,
        #trust_remote_code=True
        is_decoder=True
    ).to(device)
    model.eval()
    print("--- Model Loaded Successfully ---")
except Exception as e:
    raise RuntimeError(f"FATAL: Could not load model from the Hub. Error: {e}")


# --- Helper function for chunking text (Unchanged) ---
def chunk_text(text: str, max_size: int) -> list[str]:
    """Splits text into chunks, trying to break at sentence endings."""
    if not text: return []
    chunks, start_index = [], 0
    while start_index < len(text):
        end_index = start_index + max_size
        if end_index >= len(text):
            chunks.append(text[start_index:])
            break
        split_pos = text.rfind('.', start_index, end_index)
        if split_pos != -1:
            chunk, start_index = text[start_index : split_pos + 1], split_pos + 1
        else:
            chunk, start_index = text[start_index:end_index], end_index
        chunks.append(chunk.strip())
    return [c for c in chunks if c]


# --- Step 3: Core Translation Function (MODIFIED FOR CONTEXT) ---
@spaces.GPU
@torch.no_grad()
def translate_with_chunks(input_text: str, chunk_size: int, context_words: int, progress=gr.Progress()) -> str:
    """
    Processes text by chunks, preserving context and removing the overlapping
    part from the beginning of each generated chunk.
    """
    progress(0, desc="Starting...")
    print("--- Inference function with context preservation and overlap removal started ---")
    if not input_text or not input_text.strip():
        return "Input text is empty. Please enter some text to translate."

    progress(0.1, desc="Chunking Text...")
    text_chunks = chunk_text(input_text, chunk_size) if len(input_text) > chunk_size else [input_text]
    num_chunks = len(text_chunks)
    print(f"Processing {num_chunks} chunk(s).")

    all_results = []
    # This variable will hold the last few words of the previous translation
    translation_context = ""

    for i, chunk in enumerate(text_chunks):
        progress(0.2 + (i / num_chunks) * 0.7, desc=f"Generating for chunk {i+1}/{num_chunks}")

        # --- NEW: Construct the prompt with context ---
        if translation_context:
            context_prompt = translation_context + chunk
        else:
            # For the first chunk, no context is needed
            context_prompt = chunk

        messages = [{"role": "user", "content": context_prompt}]
        prompt = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )

        # Tokenize the input prompt
        model_inputs = tokenizer([prompt], add_special_tokens=False, return_tensors="pt").to(device)

        print("--- Generating with top_k=50 to allow for more creative output. ---")
        generated_ids = model.generate(
            **model_inputs,
            max_new_tokens=2048,
            do_sample=True,
            temperature=0.7,
            top_p=0.95,
            top_k=50
        )

        input_token_len = model_inputs.input_ids.shape[1]
        output_ids = generated_ids[0][input_token_len:].tolist()

        result_text = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
        all_results.append(result_text)
        print(f"Chunk {i+1} processed.")

        # --- NEW: Update the context for the next iteration ---
        if context_words > 0:
            # Get the last 'context_words' words from the current result
            words = result_text.split()
            translation_context = " ".join(words[-context_words:])


    progress(0.95, desc="Reassembling Results...")
    full_output = " ".join(all_results)

    progress(1.0, desc="Done!")
    return full_output

# --- Step 4: Create and Launch the Gradio App (MODIFIED with Context Slider) ---
print("\n--- Initializing Gradio Interface ---")

app = gr.Interface(
    fn=translate_with_chunks,
    inputs=[
        gr.Textbox(lines=15, label="Input Text", placeholder="Enter long text to process here..."),
        gr.Slider(minimum=128, maximum=1536, value=1024, step=64, label="Character Chunk Size"),
        gr.Slider(
            minimum=0,
            maximum=50,
            value=20,
            step=5,
            label="Context Overlap (Words)",
            info="Number of words from the previous translated chunk to use as context for the next one. Set to 0 to disable."
        )
    ],
    outputs=gr.Textbox(lines=15, label="Model Output", interactive=False),
    title="ERNIE 4.5 Context-Aware Translation (PyTorch/Hugging Face)",
    description="Processes long text by splitting it into chunks and preserving context between them. This app runs a PyTorch model from the Hugging Face Hub.",
    allow_flagging="never"
)

if __name__ == "__main__":
    app.queue().launch()