Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,596 Bytes
4db7c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# --- START OF FILE app.py ---
import sys
import os
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
from dotenv import load_dotenv
# --- FIX: Add project root to Python's path ---
project_root = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, project_root)
# --- Updated Spaces import for Zero-GPU compatibility ---
try:
import spaces
print("'spaces' module imported successfully.")
except ImportError:
print("Warning: 'spaces' module not found. Using dummy decorator for local execution.")
class DummySpaces:
def GPU(self, *args, **kwargs):
def decorator(func):
print(f"Note: Dummy @GPU decorator used for function '{func.__name__}'.")
return func
return decorator
spaces = DummySpaces()
# --- Step 1: Hugging Face Authentication ---
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("FATAL: Hugging Face token not found. Please set the HF_TOKEN environment variable.")
print("--- Logging in to Hugging Face Hub ---")
login(token=HF_TOKEN)
# --- Step 2: Initialize Model and Tokenizer (Load Once on Startup) ---
MODEL_NAME = "Gregniuki/ERNIE-4.5-0.3B-PT-Translator-EN-PL-EN"
print(f"--- Loading model from Hugging Face Hub: {MODEL_NAME} ---")
# --- Device Setup (Zero GPU Support) ---
if torch.cuda.is_available():
device = torch.device("cuda")
print("GPU detected. Using CUDA.")
else:
device = torch.device("cpu")
print("No GPU detected. Using CPU.")
dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
print(f"--- Using dtype: {dtype} ---")
print(f"--- Loading tokenizer from Hub: {MODEL_NAME} ---")
try:
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True
)
print("--- Tokenizer Loaded Successfully ---")
except Exception as e:
raise RuntimeError(f"FATAL: Could not load tokenizer from the Hub. Error: {e}")
print(f"--- Loading Model with PyTorch from Hub: {MODEL_NAME} ---")
try:
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=dtype,
trust_remote_code=True
).to(device)
model.eval()
print("--- Model Loaded Successfully ---")
except Exception as e:
raise RuntimeError(f"FATAL: Could not load model from the Hub. Error: {e}")
# --- Helper function for chunking text (Unchanged) ---
def chunk_text(text: str, max_size: int) -> list[str]:
"""Splits text into chunks, trying to break at sentence endings."""
if not text: return []
chunks, start_index = [], 0
while start_index < len(text):
end_index = start_index + max_size
if end_index >= len(text):
chunks.append(text[start_index:])
break
split_pos = text.rfind('.', start_index, end_index)
if split_pos != -1:
chunk, start_index = text[start_index : split_pos + 1], split_pos + 1
else:
chunk, start_index = text[start_index:end_index], end_index
chunks.append(chunk.strip())
return [c for c in chunks if c]
# --- Simplified translation helper for internal use ---
def do_translation(text_to_translate: str) -> str:
"""A clean helper function to run a single translation."""
if not text_to_translate.strip():
return ""
messages = [{"role": "user", "content": text_to_translate}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([prompt], add_special_tokens=False, return_tensors="pt").to(device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=2048,
do_sample=True, temperature=0.7, top_p=0.95, top_k=50
)
input_token_len = model_inputs.input_ids.shape[1]
output_ids = generated_ids[0][input_token_len:].tolist()
return tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# --- Step 3: Core Translation Function (USING ROBUST 'DIFF' ALGORITHM) ---
@spaces.GPU
@torch.no_grad()
def translate_with_chunks(input_text: str, chunk_size: int, context_words: int, progress=gr.Progress()) -> str:
"""
Processes text by chunks, using a robust word-by-word 'diff' algorithm
to reliably find and remove the overlapping translation.
"""
progress(0, desc="Starting...")
print("--- Inference with robust 'diff' context method started ---")
if not input_text or not input_text.strip():
return "Input text is empty. Please enter some text to translate."
progress(0.1, desc="Chunking Text...")
text_chunks = chunk_text(input_text, chunk_size) if len(input_text) > chunk_size else [input_text]
num_chunks = len(text_chunks)
print(f"Processing {num_chunks} chunk(s).")
all_results = []
english_context = ""
for i, chunk in enumerate(text_chunks):
progress(0.2 + (i / num_chunks) * 0.7, desc=f"Translating chunk {i+1}/{num_chunks}")
prompt_with_context = (english_context + " " + chunk).strip()
full_translation = do_translation(prompt_with_context)
final_translation_for_chunk = full_translation
if english_context:
translated_context = do_translation(english_context)
# --- Start of the Diff Algorithm ---
context_words_list = translated_context.split()
full_translation_words_list = full_translation.split()
# Find the first point of difference
overlap_len_in_words = 0
for i in range(min(len(context_words_list), len(full_translation_words_list))):
# Compare words robustly (lowercase, strip punctuation)
if context_words_list[i].strip('.,!?;:').lower() != full_translation_words_list[i].strip('.,!?;:').lower():
break
overlap_len_in_words += 1
# The new text starts after the matching words
final_translation_for_chunk = " ".join(full_translation_words_list[overlap_len_in_words:])
# --- End of the Diff Algorithm ---
all_results.append(final_translation_for_chunk)
print(f"Chunk {i+1} processed successfully.")
if context_words > 0:
words = chunk.split()
english_context = " ".join(words[-context_words:])
progress(0.95, desc="Reassembling Results...")
full_output = " ".join(all_results)
progress(1.0, desc="Done!")
return full_output
# --- Step 4: Create and Launch the Gradio App ---
print("\n--- Initializing Gradio Interface ---")
app = gr.Interface(
fn=translate_with_chunks,
inputs=[
gr.Textbox(lines=15, label="Input Text", placeholder="Enter long text to process here..."),
gr.Slider(minimum=128, maximum=1536, value=1024, step=64, label="Character Chunk Size"),
gr.Slider(
minimum=0,
maximum=50,
value=15,
step=5,
label="Context Overlap (Source Words)",
info="Number of English words from the end of the previous chunk to provide as context for the next one. Ensures consistency."
)
],
outputs=gr.Textbox(lines=15, label="Model Output", interactive=False),
title="ERNIE 4.5 Context-Aware Translator",
description="Processes long text using a robust 'diff' algorithm to ensure high-quality, consistent translations without duplication.",
allow_flagging="never"
)
if __name__ == "__main__":
app.queue().launch() |