Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,111 Bytes
a439924 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# --- START OF FILE app.py ---
import sys
import os
import re
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
from dotenv import load_dotenv
# --- FIX: Add project root to Python's path ---
project_root = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, project_root)
# --- Updated Spaces import for Zero-GPU compatibility ---
try:
import spaces
print("'spaces' module imported successfully.")
except ImportError:
print("Warning: 'spaces' module not found. Using dummy decorator for local execution.")
class DummySpaces:
def GPU(self, *args, **kwargs):
def decorator(func):
print(f"Note: Dummy @GPU decorator used for function '{func.__name__}'.")
return func
return decorator
spaces = DummySpaces()
# --- Step 1: Hugging Face Authentication ---
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("FATAL: Hugging Face token not found. Please set the HF_TOKEN environment variable.")
print("--- Logging in to Hugging Face Hub ---")
login(token=HF_TOKEN)
# --- Step 2: Initialize Model and Tokenizer ---
MODEL_NAME = "Gregniuki/ERNIE-4.5-0.3B-PT-Translator-EN-PL-EN"
print(f"--- Loading model from Hugging Face Hub: {MODEL_NAME} ---")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
print(f"--- Using device: {device}, dtype: {dtype} ---")
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=dtype, trust_remote_code=True).to(device)
model.eval()
print("--- Model and Tokenizer Loaded Successfully ---")
except Exception as e:
raise RuntimeError(f"FATAL: Could not load components. Error: {e}")
# --- Helper Functions ---
def chunk_text(text: str, max_size: int) -> list[str]:
if not text: return []
chunks, start_index = [], 0
while start_index < len(text):
end_index = start_index + max_size
if end_index >= len(text):
chunks.append(text[start_index:]); break
split_pos = text.rfind('.', start_index, end_index)
if split_pos != -1:
chunk, start_index = text[start_index : split_pos + 1], split_pos + 1
else:
chunk, start_index = text[start_index:end_index], end_index
chunks.append(chunk.strip())
return [c for c in chunks if c]
def do_translation_get_ids(text_to_translate: str) -> list[int]:
"""Runs a single translation and returns ONLY the raw output token IDs."""
if not text_to_translate.strip(): return []
messages = [{"role": "user", "content": text_to_translate}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([prompt], add_special_tokens=False, return_tensors="pt").to(device)
generated_ids_tensor = model.generate(**model_inputs, max_new_tokens=2048, do_sample=True, temperature=0.7, top_p=0.95, top_k=50)
input_token_len = model_inputs.input_ids.shape[1]
return generated_ids_tensor[0][input_token_len:].tolist()
def preprocess_text(text: str) -> str:
"""Intelligently cleans text by handling newlines."""
if not text: return ""
text = re.sub(r'\n{2,}', ' ', text)
text = text.replace('\n', ' ')
text = re.sub(r'\s{2,}', ' ', text)
return text.strip()
# --- Step 3: Core Translation Function (DEFINITIVE TOKEN-LEVEL DIFF) ---
@spaces.GPU
@torch.no_grad()
def translate_with_chunks(input_text: str, chunk_size: int, context_words: int, progress=gr.Progress()) -> str:
"""
Processes chunks using a precise token-level diff to remove overlap.
This is the most robust method for this model.
"""
progress(0, desc="Starting...")
processed_text = preprocess_text(input_text)
if not processed_text: return "Input text is empty. Please enter some text to translate."
text_chunks = chunk_text(processed_text, chunk_size) if len(processed_text) > chunk_size else [processed_text]
num_chunks = len(text_chunks)
print(f"Processing {num_chunks} chunk(s).")
all_results = []
english_context = ""
for i, chunk in enumerate(text_chunks):
progress(0.2 + (i / num_chunks) * 0.7, desc=f"Translating chunk {i+1}/{num_chunks}")
if not english_context or context_words == 0:
# First chunk or context disabled: Translate directly and decode
output_ids = do_translation_get_ids(chunk)
final_translation_for_chunk = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
else:
# --- The Token-Level Diff Logic ---
prompt_with_context = (english_context + " " + chunk).strip()
# 1. Get token IDs for the context translation
context_ids = do_translation_get_ids(english_context)
# 2. Get token IDs for the full translation
full_ids = do_translation_get_ids(prompt_with_context)
# 3. Find the first point of difference at the token level
diff_index = 0
for j in range(min(len(context_ids), len(full_ids))):
if context_ids[j] != full_ids[j]:
break
diff_index += 1
# 4. The clean translation starts from the point of difference
clean_ids = full_ids[diff_index:]
final_translation_for_chunk = tokenizer.decode(clean_ids, skip_special_tokens=True).strip()
all_results.append(final_translation_for_chunk)
print(f"Chunk {i+1} processed successfully.")
if context_words > 0:
# Update context with words from the *source* English chunk
words = chunk.split()
english_context = " ".join(words[-context_words:])
full_output = " ".join(all_results)
progress(1.0, desc="Done!")
return full_output
# --- Step 4: Create and Launch the Gradio App ---
print("\n--- Initializing Gradio Interface ---")
app = gr.Interface(
fn=translate_with_chunks,
inputs=[
gr.Textbox(lines=15, label="Input Text", placeholder="Enter long text to process here..."),
gr.Slider(minimum=256, maximum=2048, value=512, step=64, label="Character Chunk Size"),
gr.Slider(
minimum=0,
maximum=50,
value=20,
step=5,
label="Context Overlap (English Words)",
info="Number of English words from the previous chunk to use as context. A token-level comparison is used to reliably remove the overlap."
)
],
outputs=gr.Textbox(lines=15, label="Model Output", interactive=False),
title="ERNIE 4.5 Context-Aware Translator",
description="Processes long text using a precise, token-level diffing algorithm to ensure high-quality, consistent translations.",
allow_flagging="never"
)
if __name__ == "__main__":
app.queue().launch() |