# --- START OF FILE app.py --- import sys import os import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from huggingface_hub import login from dotenv import load_dotenv # --- FIX: Add project root to Python's path --- project_root = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, project_root) # --- Updated Spaces import for Zero-GPU compatibility --- try: import spaces print("'spaces' module imported successfully.") except ImportError: print("Warning: 'spaces' module not found. Using dummy decorator for local execution.") class DummySpaces: def GPU(self, *args, **kwargs): def decorator(func): print(f"Note: Dummy @GPU decorator used for function '{func.__name__}'.") return func return decorator spaces = DummySpaces() # --- Step 1: Hugging Face Authentication --- load_dotenv() HF_TOKEN = os.getenv("HF_TOKEN") if not HF_TOKEN: raise ValueError("FATAL: Hugging Face token not found. Please set the HF_TOKEN environment variable.") print("--- Logging in to Hugging Face Hub ---") login(token=HF_TOKEN) # --- Step 2: Initialize Model and Tokenizer (Load Once on Startup) --- MODEL_NAME = "Gregniuki/ERNIE-4.5-0.3B-PT-Translator-EN-PL-EN" print(f"--- Loading model from Hugging Face Hub: {MODEL_NAME} ---") # --- Device Setup --- device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dtype = torch.bfloat16 if device.type == "cuda" else torch.float32 print(f"--- Using device: {device}, dtype: {dtype} ---") # --- Load Tokenizer and Define Marker --- try: tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) # Use a semantically correct separator token from your model's vocab MARKER_STRING = "<|LOC_SEP|>" marker_token_id = tokenizer.convert_tokens_to_ids(MARKER_STRING) if marker_token_id == tokenizer.unk_token_id: raise ValueError(f"Marker token '{MARKER_STRING}' not found in tokenizer vocabulary!") print(f"--- Using marker '{MARKER_STRING}' (ID: {marker_token_id}) for precise overlap removal. ---") except Exception as e: raise RuntimeError(f"FATAL: Could not load tokenizer. Error: {e}") # --- Load Model --- try: model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=dtype, trust_remote_code=True).to(device) model.eval() print("--- Model Loaded Successfully ---") except Exception as e: raise RuntimeError(f"FATAL: Could not load model. Error: {e}") # --- Helper function for chunking text (Unchanged) --- def chunk_text(text: str, max_size: int) -> list[str]: if not text: return [] chunks, start_index = [], 0 while start_index < len(text): end_index = start_index + max_size if end_index >= len(text): chunks.append(text[start_index:]); break split_pos = text.rfind('.', start_index, end_index) if split_pos != -1: chunk, start_index = text[start_index : split_pos + 1], split_pos + 1 else: chunk, start_index = text[start_index:end_index], end_index chunks.append(chunk.strip()) return [c for c in chunks if c] # --- Modified translation helper to return IDs --- def do_translation(text_to_translate: str) -> tuple[str, list[int]]: """Runs a single translation and returns both the decoded string and the token IDs.""" if not text_to_translate.strip(): return "", [] messages = [{"role": "user", "content": text_to_translate}] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer([prompt], add_special_tokens=False, return_tensors="pt").to(device) generated_ids_tensor = model.generate(**model_inputs, max_new_tokens=2048, do_sample=True, temperature=0.7, top_p=0.95, top_k=50) input_token_len = model_inputs.input_ids.shape[1] output_ids = generated_ids_tensor[0][input_token_len:].tolist() decoded_text = tokenizer.decode(output_ids, skip_special_tokens=True).strip() return decoded_text, output_ids # --- Step 3: Core Translation Function (PRECISE TOKEN ID METHOD + DIFF FALLBACK) --- @spaces.GPU @torch.no_grad() def translate_with_chunks(input_text: str, chunk_size: int, context_words: int, progress=gr.Progress()) -> str: """ Processes chunks using a precise token ID search for overlap removal, with a robust 'diff' fallback. """ progress(0, desc="Starting...") if not input_text or not input_text.strip(): return "Input text is empty. Please enter some text to translate." text_chunks = chunk_text(input_text, chunk_size) if len(input_text) > chunk_size else [input_text] num_chunks = len(text_chunks) print(f"Processing {num_chunks} chunk(s).") all_results = [] english_context = "" for i, chunk in enumerate(text_chunks): progress(0.2 + (i / num_chunks) * 0.7, desc=f"Translating chunk {i+1}/{num_chunks}") if not english_context: # First chunk: no context needed final_translation_for_chunk, _ = do_translation(chunk) else: prompt_with_marker = f"{english_context} {MARKER_STRING} {chunk}" full_translation_str, full_translation_ids = do_translation(prompt_with_marker) # --- Primary Method: Search for Marker Token ID --- try: marker_index = full_translation_ids.index(marker_token_id) print("Precise marker token ID found. Slicing output.") clean_ids = full_translation_ids[marker_index + 1:] final_translation_for_chunk = tokenizer.decode(clean_ids, skip_special_tokens=True).strip() # --- Fallback Method: 'Diff' Algorithm --- except ValueError: print(f"Warning: Marker token ID {marker_token_id} not in output. Falling back to diff algorithm.") translated_context_str, _ = do_translation(english_context) context_words_list = translated_context_str.split() full_translation_words_list = full_translation_str.split() overlap_len_in_words = 0 for j in range(min(len(context_words_list), len(full_translation_words_list))): if context_words_list[j].strip('.,!?;:').lower() != full_translation_words_list[j].strip('.,!?;:').lower(): break overlap_len_in_words += 1 final_translation_for_chunk = " ".join(full_translation_words_list[overlap_len_in_words:]) all_results.append(final_translation_for_chunk) print(f"Chunk {i+1} processed successfully.") if context_words > 0: english_context = " ".join(chunk.split()[-context_words:]) full_output = " ".join(all_results) progress(1.0, desc="Done!") return full_output # --- Step 4: Create and Launch the Gradio App --- print("\n--- Initializing Gradio Interface ---") app = gr.Interface( fn=translate_with_chunks, inputs=[ gr.Textbox(lines=15, label="Input Text", placeholder="Enter long text to process here..."), gr.Slider(minimum=128, maximum=1536, value=1024, step=64, label="Character Chunk Size"), gr.Slider(minimum=0, maximum=50, value=15, step=5, label="Context Overlap (Source Words)") ], outputs=gr.Textbox(lines=15, label="Model Output", interactive=False), title="ERNIE 4.5 Context-Aware Translator", description="Processes long text using a precise token-based method with a robust 'diff' fallback to ensure high-quality, consistent translations.", allow_flagging="never" ) if __name__ == "__main__": app.queue().launch()