Spaces:
Running
Running
File size: 24,673 Bytes
04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 fb91ce7 04536c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
import gradio as gr
import whisper
import cv2
import numpy as np
import moviepy.editor as mp
from moviepy.video.fx import resize
from transformers import pipeline, AutoTokenizer, AutoModel
import torch
import re
import os
import tempfile
from typing import List, Dict, Tuple
import json
import librosa
from textblob import TextBlob
import emoji
import yt_dlp
import requests
from urllib.parse import urlparse, parse_qs
class AIVideoClipper:
def __init__(self):
# Initialize models
print("Loading models...")
self.whisper_model = whisper.load_model("base") # Using base model for free tier
self.sentiment_analyzer = pipeline("sentiment-analysis",
model="cardiffnlp/twitter-roberta-base-sentiment-latest")
self.emotion_analyzer = pipeline("text-classification",
model="j-hartmann/emotion-english-distilroberta-base")
# Viral keywords and patterns
self.viral_keywords = [
"wow", "amazing", "incredible", "unbelievable", "shocking", "surprise",
"secret", "trick", "hack", "tip", "mistake", "fail", "success",
"breakthrough", "discovery", "reveal", "expose", "truth", "lie",
"before", "after", "transformation", "change", "upgrade", "improve",
"money", "rich", "poor", "expensive", "cheap", "free", "save",
"love", "hate", "angry", "happy", "sad", "funny", "laugh", "cry",
"first time", "last time", "never", "always", "everyone", "nobody",
"finally", "suddenly", "immediately", "instantly", "quickly"
]
self.hook_patterns = [
r"you won't believe",
r"this will change",
r"nobody talks about",
r"the truth about",
r"what happens when",
r"here's what",
r"this is why",
r"the secret",
r"watch this",
r"wait for it"
]
def download_youtube_video(self, url: str, temp_dir: str) -> Tuple[str, Dict]:
"""Download YouTube video and return path + metadata"""
print(f"Downloading YouTube video: {url}")
# Validate YouTube URL
if not self.is_valid_youtube_url(url):
raise ValueError("Invalid YouTube URL. Please provide a valid YouTube video link.")
# Configure yt-dlp options for free tier optimization
ydl_opts = {
'format': 'best[height<=720][ext=mp4]/best[ext=mp4]/best', # Limit to 720p for performance
'outtmpl': os.path.join(temp_dir, '%(title)s.%(ext)s'),
'noplaylist': True,
'extractaudio': False,
'audioformat': 'mp3',
'ignoreerrors': False,
'no_warnings': False,
'extract_flat': False,
}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
# Extract info first
info = ydl.extract_info(url, download=False)
# Check video duration (limit to 60 minutes for free tier)
duration = info.get('duration', 0)
if duration > 3600: # 1 hour limit
raise ValueError("Video too long. Please use videos shorter than 1 hour.")
# Download the video
ydl.download([url])
# Find the downloaded file
video_title = info.get('title', 'video')
video_ext = info.get('ext', 'mp4')
video_path = os.path.join(temp_dir, f"{video_title}.{video_ext}")
# Sometimes yt-dlp changes the filename, so find the actual file
downloaded_files = [f for f in os.listdir(temp_dir) if f.endswith(('.mp4', '.mkv', '.webm'))]
if downloaded_files:
video_path = os.path.join(temp_dir, downloaded_files[0])
metadata = {
'title': video_title,
'duration': duration,
'uploader': info.get('uploader', 'Unknown'),
'view_count': info.get('view_count', 0),
'upload_date': info.get('upload_date', 'Unknown')
}
print(f"Successfully downloaded: {video_title}")
return video_path, metadata
except Exception as e:
raise Exception(f"Failed to download YouTube video: {str(e)}")
def is_valid_youtube_url(self, url: str) -> bool:
"""Check if URL is a valid YouTube URL"""
youtube_regex = re.compile(
r'(https?://)?(www\.)?(youtube|youtu|youtube-nocookie)\.(com|be)/'
r'(watch\?v=|embed/|v/|.+\?v=)?([^&=%\?]{11})'
)
return youtube_regex.match(url) is not None
def extract_video_id(self, url: str) -> str:
"""Extract video ID from YouTube URL"""
patterns = [
r'(?:v=|\/)([0-9A-Za-z_-]{11}).*',
r'(?:embed\/)([0-9A-Za-z_-]{11})',
r'(?:v\/)([0-9A-Za-z_-]{11})'
]
for pattern in patterns:
match = re.search(pattern, url)
if match:
return match.group(1)
return None
"""Extract audio features for engagement analysis"""
y, sr = librosa.load(audio_path)
# Extract features
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)[0]
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
return {
'tempo': float(tempo),
'spectral_centroid_mean': float(np.mean(spectral_centroids)),
'spectral_rolloff_mean': float(np.mean(spectral_rolloff)),
'mfcc_mean': float(np.mean(mfccs)),
'energy_variance': float(np.var(librosa.feature.rms(y=y)[0]))
}
def transcribe_video(self, video_path: str) -> List[Dict]:
"""Transcribe video and return segments with timestamps"""
print("Transcribing video...")
result = self.whisper_model.transcribe(video_path, word_timestamps=True)
segments = []
for segment in result["segments"]:
segments.append({
'start': segment['start'],
'end': segment['end'],
'text': segment['text'].strip(),
'words': segment.get('words', [])
})
return segments
def calculate_virality_score(self, text: str, audio_features: Dict,
segment_duration: float) -> float:
"""Calculate virality score for a text segment"""
score = 0.0
text_lower = text.lower()
# Sentiment analysis
sentiment = self.sentiment_analyzer(text)[0]
if sentiment['label'] == 'POSITIVE' and sentiment['score'] > 0.8:
score += 2.0
elif sentiment['label'] == 'NEGATIVE' and sentiment['score'] > 0.8:
score += 1.5
# Emotion analysis
emotion = self.emotion_analyzer(text)[0]
high_engagement_emotions = ['surprise', 'excitement', 'anger', 'joy']
if emotion['label'].lower() in high_engagement_emotions and emotion['score'] > 0.7:
score += 2.0
# Viral keywords
for keyword in self.viral_keywords:
if keyword in text_lower:
score += 1.0
# Hook patterns
for pattern in self.hook_patterns:
if re.search(pattern, text_lower):
score += 3.0
# Audio engagement features
if audio_features['tempo'] > 120: # Higher tempo = more engaging
score += 1.0
if audio_features['energy_variance'] > 0.01: # Energy variation
score += 1.0
# Segment duration (30-60 seconds ideal for clips)
if 25 <= segment_duration <= 65:
score += 2.0
elif 15 <= segment_duration <= 90:
score += 1.0
# Text length (not too short, not too long)
word_count = len(text.split())
if 20 <= word_count <= 100:
score += 1.0
return min(score, 10.0) # Cap at 10
def find_best_moments(self, segments: List[Dict], audio_features: Dict,
clip_duration: int = 30) -> List[Dict]:
"""Find the best moments for short clips"""
print("Analyzing segments for viral potential...")
scored_segments = []
for i, segment in enumerate(segments):
# Group segments into potential clips
clip_segments = [segment]
current_duration = segment['end'] - segment['start']
# Extend clip to reach desired duration
j = i + 1
while j < len(segments) and current_duration < clip_duration:
next_segment = segments[j]
if next_segment['end'] - segment['start'] <= clip_duration * 1.5:
clip_segments.append(next_segment)
current_duration = next_segment['end'] - segment['start']
j += 1
else:
break
# Calculate combined text and virality score
combined_text = " ".join([s['text'] for s in clip_segments])
virality_score = self.calculate_virality_score(
combined_text, audio_features, current_duration
)
scored_segments.append({
'start': segment['start'],
'end': clip_segments[-1]['end'],
'text': combined_text,
'duration': current_duration,
'virality_score': virality_score,
'segments': clip_segments
})
# Sort by virality score and remove overlaps
scored_segments.sort(key=lambda x: x['virality_score'], reverse=True)
# Remove overlapping segments
final_segments = []
for segment in scored_segments:
overlap = False
for existing in final_segments:
if (segment['start'] < existing['end'] and
segment['end'] > existing['start']):
overlap = True
break
if not overlap:
final_segments.append(segment)
if len(final_segments) >= 5: # Limit to top 5 clips
break
return final_segments
def add_emojis_to_text(self, text: str) -> str:
"""Add relevant emojis to text based on content"""
emoji_map = {
'money': 'π°', 'rich': 'π°', 'dollar': 'π΅',
'love': 'β€οΈ', 'heart': 'β€οΈ', 'like': 'π',
'fire': 'π₯', 'hot': 'π₯', 'amazing': 'π₯',
'laugh': 'π', 'funny': 'π', 'lol': 'π',
'wow': 'π±', 'omg': 'π±', 'shocking': 'π±',
'cool': 'π', 'awesome': 'π', 'great': 'π',
'think': 'π€', 'question': 'β', 'why': 'π€',
'warning': 'β οΈ', 'careful': 'β οΈ', 'danger': 'β οΈ',
'success': 'β
', 'win': 'π', 'winner': 'π',
'music': 'π΅', 'song': 'π΅', 'sound': 'π'
}
words = text.lower().split()
for word in words:
clean_word = re.sub(r'[^\w]', '', word)
if clean_word in emoji_map:
text = re.sub(f"\\b{re.escape(word)}\\b",
f"{word} {emoji_map[clean_word]}", text, flags=re.IGNORECASE)
return text
def create_clip(self, video_path: str, start_time: float, end_time: float,
text: str, output_path: str, add_subtitles: bool = True) -> str:
"""Create a short clip from the video"""
print(f"Creating clip: {start_time:.1f}s - {end_time:.1f}s")
# Load video
video = mp.VideoFileClip(video_path).subclip(start_time, end_time)
# Resize to 9:16 aspect ratio (1080x1920)
target_width = 1080
target_height = 1920
# Calculate scaling to fit the video in the frame
scale_w = target_width / video.w
scale_h = target_height / video.h
scale = min(scale_w, scale_h)
# Resize video
video_resized = video.resize(scale)
# Create background (blur or solid color)
if video_resized.h < target_height or video_resized.w < target_width:
# Create blurred background
background = video.resize((target_width, target_height))
background = background.fl_image(lambda frame: cv2.GaussianBlur(frame, (21, 21), 0))
# Overlay the main video in center
final_video = mp.CompositeVideoClip([
background,
video_resized.set_position('center')
], size=(target_width, target_height))
else:
final_video = video_resized
# Add subtitles if requested
if add_subtitles and text:
# Add emojis to text
text_with_emojis = self.add_emojis_to_text(text)
# Create text clip
txt_clip = mp.TextClip(
text_with_emojis,
fontsize=60,
color='white',
stroke_color='black',
stroke_width=3,
size=(target_width - 100, None),
method='caption'
).set_position(('center', 0.8), relative=True).set_duration(final_video.duration)
final_video = mp.CompositeVideoClip([final_video, txt_clip])
# Write the final video
final_video.write_videofile(
output_path,
codec='libx264',
audio_codec='aac',
temp_audiofile='temp-audio.m4a',
remove_temp=True,
fps=30,
preset='ultrafast' # Faster encoding for free tier
)
# Clean up
video.close()
final_video.close()
return output_path
def process_video(input_type, video_file, youtube_url, clip_duration, num_clips, add_subtitles):
"""Main function to process video and create clips"""
clipper = AIVideoClipper()
try:
# Create temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
video_path = None
video_metadata = {}
# Handle input based on type
if input_type == "Upload Video File":
if video_file is None:
return "Please upload a video file.", [], []
video_path = video_file.name
video_metadata = {'title': 'Uploaded Video', 'source': 'upload'}
elif input_type == "YouTube URL":
if not youtube_url or not youtube_url.strip():
return "Please enter a YouTube URL.", [], []
try:
video_path, video_metadata = clipper.download_youtube_video(youtube_url.strip(), temp_dir)
video_metadata['source'] = 'youtube'
except Exception as e:
return f"Error downloading YouTube video: {str(e)}", [], []
else:
return "Please select an input method.", [], []
if not video_path or not os.path.exists(video_path):
return "Video file not found or invalid.", [], []
# Extract audio features
print("Extracting audio features...")
audio_features = clipper.extract_audio_features(video_path)
# Transcribe video
segments = clipper.transcribe_video(video_path)
if not segments:
return "Could not transcribe video. Please check the audio quality.", [], []
# Find best moments
best_moments = clipper.find_best_moments(segments, audio_features, clip_duration)
best_moments = best_moments[:num_clips] # Limit to requested number
if not best_moments:
return "No suitable clips found. Try adjusting parameters.", [], []
# Create clips
output_videos = []
clip_info = []
for i, moment in enumerate(best_moments):
output_path = os.path.join(temp_dir, f"clip_{i+1}.mp4")
try:
clipper.create_clip(
video_path,
moment['start'],
moment['end'],
moment['text'],
output_path,
add_subtitles
)
# Copy to permanent location
permanent_path = f"clip_{i+1}_{hash(video_path)}_{i}.mp4"
os.rename(output_path, permanent_path)
output_videos.append(permanent_path)
clip_info.append({
'clip_number': i + 1,
'start_time': f"{moment['start']:.1f}s",
'end_time': f"{moment['end']:.1f}s",
'duration': f"{moment['duration']:.1f}s",
'virality_score': f"{moment['virality_score']:.2f}/10",
'text_preview': moment['text'][:100] + "..." if len(moment['text']) > 100 else moment['text'],
'source_video': video_metadata.get('title', 'Unknown')
})
except Exception as e:
print(f"Error creating clip {i+1}: {str(e)}")
continue
success_msg = f"β
Successfully created {len(output_videos)} clips from: {video_metadata.get('title', 'video')}"
return success_msg, output_videos, clip_info
except Exception as e:
return f"Error processing video: {str(e)}", [], []
# Create Gradio interface
def create_interface():
with gr.Blocks(title="AI Video Clipper", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# π¬ AI Video Clipper
Transform your long videos into viral short clips automatically!
Upload a video file or paste a YouTube URL and let AI find the most engaging moments.
**Features:**
- π€ AI-powered moment detection
- π± Auto 9:16 aspect ratio conversion
- π Automatic subtitles with emojis
- π Virality scoring
- π― Multi-language support
- π YouTube video download support
"""
)
with gr.Row():
with gr.Column():
# Input method selection
input_type = gr.Radio(
choices=["Upload Video File", "YouTube URL"],
value="Upload Video File",
label="Choose Input Method",
interactive=True
)
# Video file upload (conditional)
video_input = gr.File(
label="Upload Video File",
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
type="filepath",
visible=True
)
# YouTube URL input (conditional)
youtube_input = gr.Textbox(
label="YouTube URL",
placeholder="https://www.youtube.com/watch?v=...",
visible=False,
info="Paste any YouTube video URL (supports various formats)"
)
# Show example URLs
gr.Markdown(
"""
**Supported URL formats:**
- `https://www.youtube.com/watch?v=VIDEO_ID`
- `https://youtu.be/VIDEO_ID`
- `https://www.youtube.com/embed/VIDEO_ID`
""",
visible=False,
elem_id="url_examples"
)
with gr.Row():
clip_duration = gr.Slider(
minimum=15,
maximum=90,
value=30,
step=5,
label="Target Clip Duration (seconds)"
)
num_clips = gr.Slider(
minimum=1,
maximum=5,
value=3,
step=1,
label="Number of Clips to Generate"
)
add_subtitles = gr.Checkbox(
label="Add Subtitles with Emojis",
value=True
)
process_btn = gr.Button(
"π Create Clips",
variant="primary",
size="lg"
)
with gr.Column():
status_output = gr.Textbox(
label="Status",
interactive=False,
lines=3
)
clips_output = gr.Gallery(
label="Generated Clips",
show_label=True,
elem_id="gallery",
columns=1,
rows=3,
height="auto",
allow_preview=True,
show_download_button=True
)
with gr.Row():
info_output = gr.JSON(
label="Clip Analysis",
visible=True
)
# Dynamic input visibility
def update_input_visibility(choice):
if choice == "Upload Video File":
return (
gr.update(visible=True), # video_input
gr.update(visible=False), # youtube_input
gr.update(visible=False) # url_examples
)
else: # YouTube URL
return (
gr.update(visible=False), # video_input
gr.update(visible=True), # youtube_input
gr.update(visible=True) # url_examples
)
input_type.change(
update_input_visibility,
inputs=[input_type],
outputs=[video_input, youtube_input, gr.Markdown(elem_id="url_examples")]
)
# Example videos section
gr.Markdown("### πΊ Tips for Best Results:")
gr.Markdown("""
**π File Upload:**
- Upload videos with clear speech (podcasts, interviews, tutorials work great!)
- Supported formats: MP4, AVI, MOV, MKV, WebM
- Maximum recommended duration: 2 hours
**π YouTube Videos:**
- Any public YouTube video (no age restrictions)
- Automatically downloads in optimal quality (720p max for performance)
- Works with livestreams, premieres, and regular videos
- Maximum duration: 1 hour for free tier
**π― Content Tips:**
- Longer videos (5+ minutes) provide more clip opportunities
- Videos with engaging content and emotional moments score higher
- Good audio quality improves transcription accuracy
- Educational content, podcasts, and interviews work exceptionally well
""")
process_btn.click(
process_video,
inputs=[input_type, video_input, youtube_input, clip_duration, num_clips, add_subtitles],
outputs=[status_output, clips_output, info_output]
)
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |