File size: 3,927 Bytes
6720d7b
74d5114
 
 
 
 
 
 
c5e4846
74d5114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6267f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

import os
os.system("pip freeze")
import spaces

import gradio as gr
import torch as torch
from diffusers import MarigoldDepthPipeline, DDIMScheduler
from gradio_dualvision import DualVisionApp
from huggingface_hub import login
from PIL import Image

CHECKPOINT = "prs-eth/marigold-depth-v1-1"

if "Gty20030709" in os.environ:
    login(token=os.environ["Gty20030709"])

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32

pipe = MarigoldDepthPipeline.from_pretrained(CHECKPOINT)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe = pipe.to(device=device, dtype=dtype)
try:
    import xformers
    pipe.enable_xformers_memory_efficient_attention()
except:
    pass


class MarigoldDepthApp(DualVisionApp):
    DEFAULT_SEED = 2024
    DEFAULT_ENSEMBLE_SIZE = 1
    DEFAULT_DENOISE_STEPS = 4
    DEFAULT_PROCESSING_RES = 768

    def make_header(self):
        gr.Markdown(
            """
            <h2><a href="https://huggingface.co/spaces/prs-eth/marigold" style="color: black;">Marigold Depth Estimation</a></h2>
            """
        )
        with gr.Row(elem_classes="remove-elements"):
            gr.Markdown(
        )

    def build_user_components(self):
        with gr.Column():
            ensemble_size = gr.Slider(
                label="Ensemble size",
                minimum=1,
                maximum=10,
                step=1,
                value=self.DEFAULT_ENSEMBLE_SIZE,
            )
            denoise_steps = gr.Slider(
                label="Number of denoising steps",
                minimum=1,
                maximum=20,
                step=1,
                value=self.DEFAULT_DENOISE_STEPS,
            )
            processing_res = gr.Radio(
                [
                    ("Native", 0),
                    ("Recommended", 768),
                ],
                label="Processing resolution",
                value=self.DEFAULT_PROCESSING_RES,
            )
        return {
            "ensemble_size": ensemble_size,
            "denoise_steps": denoise_steps,
            "processing_res": processing_res,
        }

    def process(self, image_in: Image.Image, **kwargs):
        ensemble_size = kwargs.get("ensemble_size", self.DEFAULT_ENSEMBLE_SIZE)
        denoise_steps = kwargs.get("denoise_steps", self.DEFAULT_DENOISE_STEPS)
        processing_res = kwargs.get("processing_res", self.DEFAULT_PROCESSING_RES)
        generator = torch.Generator(device=device).manual_seed(self.DEFAULT_SEED)

        pipe_out = pipe(
            image_in,
            ensemble_size=ensemble_size,
            num_inference_steps=denoise_steps,
            processing_resolution=processing_res,
            batch_size=1 if processing_res == 0 else 2,
            output_uncertainty=ensemble_size >= 3,
            generator=generator,
        )

        depth_vis = pipe.image_processor.visualize_depth(pipe_out.prediction)[0]
        depth_16bit = pipe.image_processor.export_depth_to_16bit_png(pipe_out.prediction)[0]

        out_modalities = {
            "Depth Visualization": depth_vis,
            "Depth 16-bit": depth_16bit,
        }
        if ensemble_size >= 3:
            uncertainty = pipe.image_processor.visualize_uncertainty(pipe_out.uncertainty)[0]
            out_modalities["Uncertainty"] = uncertainty

        out_settings = {
            "ensemble_size": ensemble_size,
            "denoise_steps": denoise_steps,
            "processing_res": processing_res,
        }
        return out_modalities, out_settings


with MarigoldDepthApp(
    title="Marigold Depth",
    examples_path="files",
    examples_per_page=12,
    squeeze_canvas=True,
    spaces_zero_gpu_enabled=True,
) as demo:
    demo.queue(
        api_open=False,
    ).launch(
        server_name="0.0.0.0",
        server_port=7860,
    )