File size: 16,026 Bytes
4e514a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
from __future__ import annotations

import re
import warnings
from pathlib import Path
from typing import Any, List, Literal, cast

import numpy as np
import PIL.Image
from PIL import ImageOps

from gradio import image_utils, utils
from gradio.components.base import Component
from gradio.data_classes import FileData, GradioModel
from gradio.events import Events

PIL.Image.init()  # fixes https://github.com/gradio-app/gradio/issues/2843


class AnnotatedImageData(GradioModel):
    image: FileData
    boxes: List[dict] = []


def rgb2hex(r,g,b):
    def clip(x):
        return max(min(x, 255), 0)
    return "#{:02x}{:02x}{:02x}".format(clip(r),clip(g),clip(b))


class image_annotator(Component):
    """
    Creates a component to annotate images with bounding boxes. The bounding boxes can be created and edited by the user or be passed by code.
    It is also possible to predefine a set of valid classes and colors.
    """

    EVENTS = [
        Events.clear,
        Events.change,
        Events.upload,
    ]

    data_model = AnnotatedImageData

    def __init__(
        self,
        value: dict | None = None,
        *,
        boxes_alpha: float | None = None,
        label_list: list[str] | None = None,
        label_colors: list[str] | None = None,
        box_min_size: int | None = None,
        handle_size: int | None = None,
        box_thickness: int | None = None,
        box_selected_thickness: int | None = None,
        disable_edit_boxes: bool | None = None,
        single_box: bool = False,
        height: int | str | None = None,
        width: int | str | None = None,
        image_mode: Literal[
            "1", "L", "P", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"
        ] = "RGB",
        sources: list[Literal["upload", "webcam", "clipboard"]] | None = [
            "upload",
            "webcam",
            "clipboard",
        ],
        image_type: Literal["numpy", "pil", "filepath"] = "numpy",
        label: str | None = None,
        container: bool = True,
        scale: int | None = None,
        min_width: int = 160,
        interactive: bool | None = True,
        visible: bool = True,
        elem_id: str | None = None,
        elem_classes: list[str] | str | None = None,
        render: bool = True,
        show_label: bool | None = None,
        show_download_button: bool = True,
        show_share_button: bool | None = None,
        show_clear_button: bool | None = True,
        show_remove_button: bool | None = None,
        handles_cursor: bool | None = True,
    ):
        """
        Parameters:
            value: A dict or None. The dictionary must contain a key 'image' with either an URL to an image, a numpy image or a PIL image. Optionally it may contain a key 'boxes' with a list of boxes. Each box must be a dict wit the keys: 'xmin', 'ymin', 'xmax' and 'ymax' with the absolute image coordinates of the box. Optionally can also include the keys 'label' and 'color' describing the label and color of the box. Color must be a tuple of RGB values (e.g. `(255,255,255)`).
            boxes_alpha: Opacity of the bounding boxes 0 and 1.
            label_list: List of valid labels.
            label_colors: Optional list of colors for each label when `label_list` is used. Colors must be a tuple of RGB values (e.g. `(255,255,255)`).
            box_min_size: Minimum valid bounding box size.
            handle_size: Size of the bounding box resize handles.
            box_thickness: Thickness of the bounding box outline.
            box_selected_thickness: Thickness of the bounding box outline when it is selected.
            disable_edit_boxes: Disables the ability to set and edit the label and color of the boxes.
            single_box: If True, at most one box can be drawn.
            height: The height of the displayed image, specified in pixels if a number is passed, or in CSS units if a string is passed.
            width: The width of the displayed image, specified in pixels if a number is passed, or in CSS units if a string is passed.
            image_mode: "RGB" if color, or "L" if black and white. See https://pillow.readthedocs.io/en/stable/handbook/concepts.html for other supported image modes and their meaning.
            sources: List of sources for the image. "upload" creates a box where user can drop an image file, "webcam" allows user to take snapshot from their webcam, "clipboard" allows users to paste an image from the clipboard. If None, defaults to ["upload", "webcam", "clipboard"].
            image_type: The format the image is converted before being passed into the prediction function. "numpy" converts the image to a numpy array with shape (height, width, 3) and values from 0 to 255, "pil" converts the image to a PIL image object, "filepath" passes a str path to a temporary file containing the image. If the image is SVG, the `type` is ignored and the filepath of the SVG is returned.
            label: The label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.
            container: If True, will place the component in a container - providing some extra padding around the border.
            scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
            min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
            interactive: if True, will allow users to upload and annotate an image; if False, can only be used to display annotated images.
            visible: If False, component will be hidden.
            elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
            elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
            render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
            show_label: if True, will display label.
            show_download_button: If True, will show a button to download the image.
            show_share_button: If True, will show a share icon in the corner of the component that allows user to share outputs to Hugging Face Spaces Discussions. If False, icon does not appear. If set to None (default behavior), then the icon appears if this Gradio app is launched on Spaces, but not otherwise.
            show_clear_button: If True, will show a button to clear the current image.
            show_remove_button: If True, will show a button to remove the selected bounding box.
            handles_cursor: If True, the cursor will change when hovering over box handles in drag mode. Can be CPU-intensive.
        """

        valid_types = ["numpy", "pil", "filepath"]
        if image_type not in valid_types:
            raise ValueError(
                f"Invalid value for parameter `type`: {type}. Please choose from one of: {valid_types}"
            )
        self.image_type = image_type
        self.height = height
        self.width = width
        self.image_mode = image_mode
        
        self.sources = sources
        valid_sources = ["upload", "clipboard", "webcam", None]
        if isinstance(sources, str):
            self.sources = [sources]
        if self.sources is None:
            self.sources = []
        if self.sources is not None:
            for source in self.sources:
                if source not in valid_sources:
                    raise ValueError(
                        f"`sources` must a list consisting of elements in {valid_sources}"
                    )
        
        self.show_download_button = show_download_button
        self.show_share_button = (
            (utils.get_space() is not None)
            if show_share_button is None
            else show_share_button
        )
        self.show_clear_button = show_clear_button
        self.show_remove_button = show_remove_button
        self.handles_cursor = handles_cursor

        self.boxes_alpha = boxes_alpha
        self.box_min_size = box_min_size
        self.handle_size = handle_size
        self.box_thickness = box_thickness
        self.box_selected_thickness = box_selected_thickness
        self.disable_edit_boxes = disable_edit_boxes
        self.single_box = single_box
        if label_list:
            self.label_list = [(l, i) for i, l in enumerate(label_list)]
        else:
            self.label_list = None
        
        # Parse colors
        self.label_colors = label_colors
        if self.label_colors:
            if (not isinstance(self.label_colors, list)
                or self.label_list is None
                or len(self.label_colors) != len(self.label_list)):
                raise ValueError("``label_colors`` must be a list with the "
                                 "same length as ``label_list``")
            for i, color in enumerate(self.label_colors):
                if isinstance(color, str):
                    if len(color) != 7 or color[0] != "#":
                        raise ValueError(f"Invalid color value {color}")
                elif isinstance(color, (list, tuple)):
                    self.label_colors[i] = rgb2hex(*color)

        super().__init__(
            label=label,
            every=None,
            show_label=show_label,
            container=container,
            scale=scale,
            min_width=min_width,
            interactive=interactive,
            visible=visible,
            elem_id=elem_id,
            elem_classes=elem_classes,
            render=render,
            value=value,
        )

    def preprocess_image(self, image: FileData | None) -> str | None:
        if image is None:
            return None
        file_path = Path(image.path)
        if image.orig_name:
            p = Path(image.orig_name)
            name = p.stem
            suffix = p.suffix.replace(".", "")
            if suffix in ["jpg", "jpeg"]:
                suffix = "jpeg"
        else:
            name = "image"
            suffix = "png"

        if suffix.lower() == "svg":
            return str(file_path)
        
        im = PIL.Image.open(file_path)
        exif = im.getexif()
        # 274 is the code for image rotation and 1 means "correct orientation"
        if exif.get(274, 1) != 1 and hasattr(ImageOps, "exif_transpose"):
            try:
                im = ImageOps.exif_transpose(im)
            except Exception:
                warnings.warn(
                    f"Failed to transpose image {file_path} based on EXIF data."
                )
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            im = im.convert(self.image_mode)
        return image_utils.format_image(
            im,
            cast(Literal["numpy", "pil", "filepath"], self.image_type),
            self.GRADIO_CACHE,
            name=name,
            format=suffix,
        )

    def preprocess_boxes(self, boxes: List[dict] | None) -> list:
        parsed_boxes = []
        for box in boxes:
            new_box = {}
            new_box["label"] = box.get("label", "")
            new_box["color"] = (0,0,0)
            if "color" in box:
                match = re.match(r'rgb\((\d+), (\d+), (\d+)\)', box["color"])
                if match:
                    new_box["color"] = tuple(int(match.group(i)) for i in range(1, 4))
            scale_factor = box.get("scaleFactor", 1)
            new_box["xmin"] = round(box["xmin"] / scale_factor)
            new_box["ymin"] = round(box["ymin"] / scale_factor)
            new_box["xmax"] = round(box["xmax"] / scale_factor)
            new_box["ymax"] = round(box["ymax"] / scale_factor)
            parsed_boxes.append(new_box)
        return parsed_boxes

    def preprocess(self, payload: AnnotatedImageData | None) -> dict | None:
        """
        Parameters:
            payload: an AnnotatedImageData object.
        Returns:
            A dict with the image and boxes or None.
        """
        if payload is None:
            return None
        
        ret_value = {
            "image": self.preprocess_image(payload.image),
            "boxes": self.preprocess_boxes(payload.boxes)
        }
        return ret_value

    def postprocess(self, value: dict | None) -> AnnotatedImageData | None:
        """
        Parameters:
            value: A dict with an image and an optional list of boxes or None.
        Returns:
            Returns an AnnotatedImageData object.
        """
        # Check value
        if value is None:
            return None
        if not isinstance(value, dict):
            raise ValueError(f"``value`` must be a dict. Got {type(value)}")
    
        # Check and get boxes
        boxes = value.setdefault("boxes", [])
        if boxes:
            if not isinstance(value["boxes"], (list, tuple)):
                raise ValueError(f"'boxes' must be a list of dicts. Got "
                                 f"{type(value['boxes'])}")
            for box in value["boxes"]:
                if (not isinstance(box, dict)
                    or not set(box.keys()).issubset({"label", "xmin", "ymin", "xmax", "ymax", "color"})
                    or not set(box.keys()).issuperset({"xmin", "ymin", "xmax", "ymax"})
                    ):
                    raise ValueError("Box must be a dict with the following "
                                     "keys: 'xmin', 'ymin', 'xmax', 'ymax', "
                                     f"['label', 'color']'. Got {box}")

        # Check and parse image
        image = value.setdefault("image", None)
        if image is not None:
            if isinstance(image, str) and image.lower().endswith(".svg"):
                image = FileData(path=image, orig_name=Path(image).name)
            else:
                saved = image_utils.save_image(image, self.GRADIO_CACHE)
                orig_name = Path(saved).name if Path(saved).exists() else None
                image = FileData(path=saved, orig_name=orig_name)
        else:
            raise ValueError(f"An image must be provided. Got {value}")
        
        return AnnotatedImageData(image=image, boxes=boxes)

    def process_example(self, value: dict | None) -> FileData | None:
        if value is None:
            return None
        if not isinstance(value, dict):
            raise ValueError(f"``value`` must be a dict. Got {type(value)}")

        image = value.setdefault("image", None)
        if image is not None:
            if isinstance(image, str) and image.lower().endswith(".svg"):
                image = FileData(path=image, orig_name=Path(image).name)
            else:
                saved = image_utils.save_image(image, self.GRADIO_CACHE)
                orig_name = Path(saved).name if Path(saved).exists() else None
                image = FileData(path=saved, orig_name=orig_name)
        else:
            raise ValueError(f"An image must be provided. Got {value}")

        return image

    def example_inputs(self) -> Any:
        return {
            "image": "https://raw.githubusercontent.com/gradio-app/gradio/main/guides/assets/logo.png",
            "boxes": [
                {
                    "xmin": 30,
                    "ymin": 70,
                    "xmax": 530,
                    "ymax": 500,
                    "label": "Gradio",
                    "color": (250,185,0),
                }
            ]
        }