LayoutPainter / app.py
HBDing's picture
upd
793189d
raw
history blame
1.78 kB
import gradio as gr
from gradio_image_annotation import image_annotator
from diffusers import StableDiffusionPipeline
import os
import torch
import spaces #[uncomment to use ZeroGPU]
# Load model
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to("cuda" if torch.cuda.is_available() else "cpu")
pipe.safety_checker = None
example_annotation = {
"image": os.path.join(os.path.dirname(__file__), "background.png"),
"boxes": [],
}
@spaces.GPU
def get_boxes_json(annotations):
print(annotations)
image = annotations["image"]
width = image.shape[1]
height = image.shape[0]
boxes = annotations["boxes"]
prompt_final = [[]]
for box in boxes:
box["xmin"] = box["xmin"] / width
box["xmax"] = box["xmax"] / width
box["ymin"] = box["ymin"] / height
box["ymax"] = box["ymax"] / height
prompt_final[0].append(box["label"])
# import pdb; pdb.set_trace()
prompt = ", ".join(prompt_final[0])
image = pipe(prompt).images[0]
return image
# return annotations["boxes"]
with gr.Blocks() as demo:
with gr.Tab("DreamRenderer", id="DreamRenderer"):
with gr.Row():
with gr.Column(scale=1):
annotator = image_annotator(
example_annotation,
height=512,
width=512
)
with gr.Column(scale=1):
generated_image = gr.Image(label="Generated Image", height=512, width=512)
button_get = gr.Button("Generation")
button_get.click(get_boxes_json, inputs=annotator, outputs=generated_image)
if __name__ == "__main__":
demo.launch()