Spaces:
Running
Running
import gradio as gr | |
from gradio_image_annotation import image_annotator | |
from diffusers import StableDiffusionPipeline | |
import os | |
import torch | |
import spaces #[uncomment to use ZeroGPU] | |
# Load model | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 | |
).to("cuda" if torch.cuda.is_available() else "cpu") | |
pipe.safety_checker = None | |
example_annotation = { | |
"image": os.path.join(os.path.dirname(__file__), "background.png"), | |
"boxes": [], | |
} | |
def get_boxes_json(annotations): | |
print(annotations) | |
image = annotations["image"] | |
width = image.shape[1] | |
height = image.shape[0] | |
boxes = annotations["boxes"] | |
prompt_final = [[]] | |
for box in boxes: | |
box["xmin"] = box["xmin"] / width | |
box["xmax"] = box["xmax"] / width | |
box["ymin"] = box["ymin"] / height | |
box["ymax"] = box["ymax"] / height | |
prompt_final[0].append(box["label"]) | |
# import pdb; pdb.set_trace() | |
prompt = ", ".join(prompt_final[0]) | |
image = pipe(prompt).images[0] | |
return image | |
# return annotations["boxes"] | |
with gr.Blocks() as demo: | |
with gr.Tab("DreamRenderer", id="DreamRenderer"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
annotator = image_annotator( | |
example_annotation, | |
height=512, | |
width=512 | |
) | |
with gr.Column(scale=1): | |
generated_image = gr.Image(label="Generated Image", height=512, width=512) | |
button_get = gr.Button("Generation") | |
button_get.click(get_boxes_json, inputs=annotator, outputs=generated_image) | |
if __name__ == "__main__": | |
demo.launch() |