Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,441 Bytes
fd09229 d958a06 f0a45ec d958a06 be449ca d958a06 be449ca d958a06 fd09229 d958a06 fd09229 d958a06 f0a45ec d958a06 f0a45ec d958a06 be449ca d958a06 571cb14 d958a06 f0a45ec d958a06 fd09229 d958a06 fd09229 d958a06 571cb14 d958a06 1d4a25c d958a06 f0a45ec d958a06 f0a45ec 0be64b3 f0a45ec d958a06 0be64b3 d958a06 be449ca 0be64b3 1d4a25c be449ca 0be64b3 1d4a25c 0be64b3 1d4a25c 0be64b3 be449ca 0be64b3 1d4a25c be449ca 0be64b3 be449ca 0be64b3 b6645f5 0be64b3 1d4a25c be449ca 0be64b3 1d4a25c be449ca 0be64b3 1d4a25c be449ca b6645f5 0be64b3 1d4a25c be449ca 0be64b3 1d4a25c be449ca 0be64b3 1d4a25c d958a06 1d4a25c 77cc30a 1d4a25c d958a06 1d4a25c d958a06 77cc30a ddca90f 77cc30a ddca90f 77cc30a ddca90f 77cc30a ddca90f 1d4a25c 77cc30a ddca90f 77cc30a 1d4a25c 77cc30a 1d4a25c 77cc30a 1d4a25c 77cc30a 1d4a25c 77cc30a 1d4a25c 77cc30a d958a06 1d4a25c d958a06 77cc30a ddca90f 77cc30a ddca90f 77cc30a ddca90f 77cc30a d958a06 1d4a25c d958a06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
from transformers import AutoProcessor, AutoModelForImageTextToText
from PIL import Image
import torch
import logging
from typing import Union, Tuple
from config import Config
from knowledge_base import GarbageClassificationKnowledge
import re
def preprocess_image(image: Image.Image) -> Image.Image:
"""
Preprocess image to meet Gemma3n requirements (512x512)
"""
# Convert to RGB if necessary
if image.mode != "RGB":
image = image.convert("RGB")
# Resize to 512x512 as required by Gemma3n
target_size = (512, 512)
# Calculate aspect ratio preserving resize
original_width, original_height = image.size
aspect_ratio = original_width / original_height
if aspect_ratio > 1:
# Width is larger
new_width = target_size[0]
new_height = int(target_size[0] / aspect_ratio)
else:
# Height is larger or equal
new_height = target_size[1]
new_width = int(target_size[1] * aspect_ratio)
# Resize image maintaining aspect ratio
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Create a new image with target size and paste the resized image
processed_image = Image.new(
"RGB", target_size, (255, 255, 255)
) # White background
# Calculate position to center the image
x_offset = (target_size[0] - new_width) // 2
y_offset = (target_size[1] - new_height) // 2
processed_image.paste(image, (x_offset, y_offset))
return processed_image
class GarbageClassifier:
def __init__(self, config: Config = None):
self.config = config or Config()
self.knowledge = GarbageClassificationKnowledge()
self.processor = None
self.model = None
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Setup logging
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
def load_model(self):
"""Load the model and processor"""
try:
self.logger.info(f"Loading model: {self.config.MODEL_NAME}")
# Load processor
kwargs = {}
if self.config.HF_TOKEN:
kwargs["token"] = self.config.HF_TOKEN
self.processor = AutoProcessor.from_pretrained(
self.config.MODEL_NAME, **kwargs
)
# Load model
self.model = AutoModelForImageTextToText.from_pretrained(
self.config.MODEL_NAME,
torch_dtype=self.config.TORCH_DTYPE,
device_map=self.config.DEVICE_MAP,
)
self.logger.info("Model loaded successfully")
except Exception as e:
self.logger.error(f"Error loading model: {str(e)}")
raise
def classify_image(self, image: Union[str, Image.Image]) -> Tuple[str, str, int]:
"""
Classify garbage in the image
Args:
image: PIL Image or path to image file
Returns:
Tuple of (classification_result, detailed_analysis, confidence_score)
"""
if self.model is None or self.processor is None:
raise RuntimeError("Model not loaded. Call load_model() first.")
try:
# Load and process image
if isinstance(image, str):
image = Image.open(image)
elif not isinstance(image, Image.Image):
raise ValueError("Image must be a PIL Image or file path")
# Preprocess image to meet Gemma3n requirements
processed_image = preprocess_image(image)
# Prepare messages with system prompt and user query
messages = [
{
"role": "system",
"content": [
{
"type": "text",
"text": self.knowledge.get_system_prompt(),
}
],
},
{
"role": "user",
"content": [
{"type": "image", "image": processed_image},
{
"type": "text",
"text": "Please classify what you see in this image. If it shows garbage/waste items, classify them according to the garbage classification standards. If it shows people, living things, or other non-waste items, classify it as 'Unable to classify' and explain why it's not garbage. Also provide a confidence score from 1-10 indicating how certain you are about your classification.",
},
],
},
]
# Apply chat template and tokenize
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(self.model.device, dtype=self.model.dtype)
input_len = inputs["input_ids"].shape[-1]
outputs = self.model.generate(
**inputs,
max_new_tokens=self.config.MAX_NEW_TOKENS,
disable_compile=True,
)
response = self.processor.batch_decode(
outputs[:, input_len:],
skip_special_tokens=True,
)[0]
# Extract classification from response
classification = self._extract_classification(response)
# Extract reasoning from response
reasoning = self._extract_reasoning(response)
# Extract confidence score from response
confidence_score = self._extract_confidence_score(response, classification)
return classification, reasoning, confidence_score
except Exception as e:
self.logger.error(f"Error during classification: {str(e)}")
import traceback
traceback.print_exc()
return "Error", f"Classification failed: {str(e)}", 0
def _calculate_confidence_heuristic(self, response_lower: str, classification: str) -> int:
"""Calculate confidence based on response content and classification type"""
base_confidence = 5
# Confidence indicators (increase confidence)
high_confidence_words = ["clearly", "obviously", "definitely", "certainly", "exactly"]
medium_confidence_words = ["appears", "seems", "likely", "probably"]
# Uncertainty indicators (decrease confidence)
uncertainty_words = ["might", "could", "possibly", "maybe", "unclear", "difficult"]
# Adjust based on confidence words
for word in high_confidence_words:
if word in response_lower:
base_confidence += 2
break
for word in medium_confidence_words:
if word in response_lower:
base_confidence += 1
break
for word in uncertainty_words:
if word in response_lower:
base_confidence -= 2
break
# Classification-specific adjustments
if classification == "Unable to classify":
if any(indicator in response_lower for indicator in ["person", "people", "human", "living"]):
base_confidence += 1 # High confidence when clearly not waste
else:
base_confidence -= 1 # Lower confidence for unclear items
elif classification == "Error":
base_confidence = 1
else:
# Check for specific material mentions (increases confidence)
specific_materials = ["aluminum", "plastic", "glass", "metal", "cardboard", "paper"]
if any(material in response_lower for material in specific_materials):
base_confidence += 1
return min(max(base_confidence, 1), 10)
def _extract_confidence_score(self, response: str, classification: str) -> int:
"""Extract confidence score from response or calculate based on classification"""
response_lower = response.lower()
# Look for explicit confidence scores in the response
confidence_patterns = [
r'\*\*confidence score\*\*[:\s]*(\d+)', # For **Confidence Score**: format
r'confidence[:\s]*(\d+)',
r'confident[:\s]*(\d+)',
r'certainty[:\s]*(\d+)',
r'score[:\s]*(\d+)',
r'(\d+)/10',
r'(\d+)\s*out\s*of\s*10'
]
for pattern in confidence_patterns:
match = re.search(pattern, response_lower)
if match:
score = int(match.group(1))
return min(max(score, 1), 10) # Clamp between 1-10
# If no explicit score found, calculate based on classification indicators
return self._calculate_confidence_heuristic(response_lower, classification)
def _extract_classification(self, response: str) -> str:
"""Extract the main classification from the response - trust Gemma 3n intelligence more"""
response_lower = response.lower()
# Primary: Trust explicit category mentions from Gemma 3n
categories = self.knowledge.get_categories()
for category in categories:
if category.lower() in response_lower:
# Simple negation check
category_index = response_lower.find(category.lower())
context_before = response_lower[max(0, category_index - 20):category_index]
if not any(neg in context_before[-10:] for neg in ["not", "cannot", "isn't"]):
return category
# Secondary: Look for explicit mixed garbage warnings from model
mixed_warnings = [
"multiple garbage types detected",
"separate items",
"different garbage types",
"mixed together"
]
if any(warning in response_lower for warning in mixed_warnings):
return "Unable to classify"
# Tertiary: Basic material detection (simplified)
if any(material in response_lower for material in
["recyclable", "aluminum", "plastic", "glass", "metal", "cardboard"]):
# Check for contamination
if any(cont in response_lower for cont in ["obvious food", "substantial residue", "chunks", "liquids"]):
return "Food/Kitchen Waste"
return "Recyclable Waste"
if any(food in response_lower for food in ["food", "organic", "kitchen", "fruit", "vegetable"]):
return "Food/Kitchen Waste"
if any(hazard in response_lower for hazard in ["battery", "hazardous", "chemical", "toxic"]):
return "Hazardous Waste"
if any(other in response_lower for other in ["cigarette", "ceramic", "styrofoam"]):
return "Other Waste"
# Non-garbage detection
if any(non_garbage in response_lower for non_garbage in ["person", "people", "human", "living", "animal"]):
return "Unable to classify"
# Final fallback - let Gemma 3n's reasoning guide us
if any(unable in response_lower for unable in ["unable to classify", "cannot classify", "not garbage"]):
return "Unable to classify"
# Default to Unable to classify if unclear
return "Unable to classify"
def _extract_reasoning(self, response: str) -> str:
"""Extract only the reasoning content, removing all formatting markers and classification info"""
import re
# Remove all formatting markers
cleaned_response = response.replace("**Classification**:", "")
cleaned_response = cleaned_response.replace("**Reasoning**:", "")
cleaned_response = re.sub(r'\*\*.*?\*\*:', '', cleaned_response) # Remove any **text**: patterns
cleaned_response = cleaned_response.replace("**", "") # Remove remaining ** markers
# Remove category names that might appear at the beginning
categories = self.knowledge.get_categories()
for category in categories:
if cleaned_response.strip().startswith(category):
cleaned_response = cleaned_response.replace(category, "", 1)
break
# Remove common material names that might appear at the beginning
material_names = [
"Glass", "Plastic", "Metal", "Paper", "Cardboard", "Aluminum",
"Steel", "Iron", "Tin", "Foil", "Wood", "Ceramic", "Fabric",
"Recyclable Waste", "Food/Kitchen Waste", "Hazardous Waste", "Other Waste"
]
# Clean the response
cleaned_response = cleaned_response.strip()
# Remove material names at the beginning
for material in material_names:
if cleaned_response.startswith(material):
# Remove the material name and any following punctuation/whitespace
cleaned_response = cleaned_response[len(material):].lstrip(" .,;:")
break
# Split into sentences and clean up
sentences = []
# Split by common sentence endings, but keep the endings
parts = re.split(r'([.!?])\s+', cleaned_response)
# Rejoin parts to maintain sentence structure
reconstructed_parts = []
for i in range(0, len(parts), 2):
if i < len(parts):
sentence = parts[i]
if i + 1 < len(parts):
sentence += parts[i + 1] # Add the punctuation back
reconstructed_parts.append(sentence)
for part in reconstructed_parts:
part = part.strip()
if not part:
continue
# Skip parts that are just category names or material names
if part in categories or part.rstrip(".,;:") in material_names:
continue
# Skip parts that start with category names or material names
is_category_line = False
for item in categories + material_names:
if part.startswith(item):
is_category_line = True
break
if is_category_line:
continue
# Clean up the sentence
part = re.sub(r'^[A-Za-z\s]+:', '', part).strip() # Remove "Category:" type prefixes
if part and len(part) > 3: # Only keep meaningful content
sentences.append(part)
# Join sentences
reasoning = ' '.join(sentences)
# Final cleanup - remove any remaining standalone material words at the beginning
reasoning_words = reasoning.split()
if reasoning_words and reasoning_words[0] in [m.lower() for m in material_names]:
reasoning_words = reasoning_words[1:]
reasoning = ' '.join(reasoning_words)
# Ensure proper capitalization
if reasoning:
reasoning = reasoning[0].upper() + reasoning[1:] if len(reasoning) > 1 else reasoning.upper()
# Ensure proper punctuation
if not reasoning.endswith(('.', '!', '?')):
reasoning += '.'
return reasoning if reasoning else "Analysis not available"
def get_categories_info(self):
"""Get information about all categories"""
return self.knowledge.get_category_descriptions()
|