Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,477 Bytes
9390992 b8e7478 9390992 b8e7478 9390992 b8e7478 9390992 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
from transformers import AutoProcessor, AutoModelForImageTextToText
from PIL import Image
import torch
import logging
from typing import Union, Tuple
from config import Config
from knowledge_base import GarbageClassificationKnowledge
class GarbageClassifier:
def __init__(self, config: Config = None):
self.config = config or Config()
self.knowledge = GarbageClassificationKnowledge()
self.processor = None
self.model = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Setup logging
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
def load_model(self):
"""Load the model and processor"""
try:
self.logger.info(f"Loading model: {self.config.MODEL_NAME}")
# Load processor
kwargs = {}
if self.config.HF_TOKEN:
kwargs["token"] = self.config.HF_TOKEN
self.processor = AutoProcessor.from_pretrained(
self.config.MODEL_NAME, **kwargs
)
# Load model
self.model = AutoModelForImageTextToText.from_pretrained(
self.config.MODEL_NAME,
torch_dtype=self.config.TORCH_DTYPE,
device_map=self.config.DEVICE_MAP,
)
self.logger.info("Model loaded successfully")
except Exception as e:
self.logger.error(f"Error loading model: {str(e)}")
raise
def preprocess_image(self, image: Image.Image) -> Image.Image:
"""
Preprocess image to meet Gemma3n requirements (512x512)
"""
# Convert to RGB if necessary
if image.mode != "RGB":
image = image.convert("RGB")
# Resize to 512x512 as required by Gemma3n
target_size = (512, 512)
# Calculate aspect ratio preserving resize
original_width, original_height = image.size
aspect_ratio = original_width / original_height
if aspect_ratio > 1:
# Width is larger
new_width = target_size[0]
new_height = int(target_size[0] / aspect_ratio)
else:
# Height is larger or equal
new_height = target_size[1]
new_width = int(target_size[1] * aspect_ratio)
# Resize image maintaining aspect ratio
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Create a new image with target size and paste the resized image
processed_image = Image.new(
"RGB", target_size, (255, 255, 255)
) # White background
# Calculate position to center the image
x_offset = (target_size[0] - new_width) // 2
y_offset = (target_size[1] - new_height) // 2
processed_image.paste(image, (x_offset, y_offset))
return processed_image
def classify_image(self, image: Union[str, Image.Image]) -> Tuple[str, str]:
"""
Classify garbage in the image
Args:
image: PIL Image or path to image file
Returns:
Tuple of (classification_result, full_response)
"""
if self.model is None or self.processor is None:
raise RuntimeError("Model not loaded. Call load_model() first.")
try:
# Load and process image
if isinstance(image, str):
image = Image.open(image)
elif not isinstance(image, Image.Image):
raise ValueError("Image must be a PIL Image or file path")
# Preprocess image to meet Gemma3n requirements
processed_image = self.preprocess_image(image)
# Prepare messages with system prompt and user query
messages = [
{
"role": "system",
"content": [
{
"type": "text",
"text": self.knowledge.get_system_prompt(),
}
],
},
{
"role": "user",
"content": [
{"type": "image", "image": processed_image},
{
"type": "text",
"text": "Please classify what you see in this image. If it shows garbage/waste items, classify them according to the garbage classification standards. If it shows people, living things, or other non-waste items, classify it as 'Unable to classify' and explain why it's not garbage.",
},
],
},
]
# Apply chat template and tokenize
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(self.model.device, dtype=self.model.dtype)
input_len = inputs["input_ids"].shape[-1]
outputs = self.model.generate(
**inputs,
max_new_tokens=self.config.MAX_NEW_TOKENS,
disable_compile=True,
)
response = self.processor.batch_decode(
outputs[:, input_len:],
skip_special_tokens=True,
)[0]
# Extract classification from response
classification = self._extract_classification(response)
# Create formatted response
formatted_response = self._format_response(classification, response)
return classification, formatted_response
except Exception as e:
self.logger.error(f"Error during classification: {str(e)}")
import traceback
traceback.print_exc()
return "Error", f"Classification failed: {str(e)}"
def _extract_classification(self, response: str) -> str:
"""Extract the main classification from the response"""
categories = self.knowledge.get_categories()
# Convert response to lowercase for matching
response_lower = response.lower()
# First check for "Unable to classify" indicators
unable_indicators = [
"unable to classify",
"cannot classify",
"not garbage",
"not waste",
"person",
"people",
"human",
"face",
"living",
"alive",
"animal",
"functioning",
"in use",
"working",
"furniture",
"appliance",
"electronic device",
]
if any(indicator in response_lower for indicator in unable_indicators):
return "Unable to classify"
# Look for exact category matches (excluding "Unable to classify" since we handled it above)
waste_categories = [cat for cat in categories if cat != "Unable to classify"]
for category in waste_categories:
if category.lower() in response_lower:
return category
# Look for key terms if no exact match
category_keywords = {
"Recyclable Waste": [
"recyclable",
"recycle",
"plastic",
"paper",
"metal",
"glass",
"bottle",
"can",
"aluminum",
"cardboard",
],
"Food/Kitchen Waste": [
"food",
"kitchen",
"organic",
"fruit",
"vegetable",
"leftovers",
"scraps",
"peel",
"core",
"bone",
],
"Hazardous Waste": [
"hazardous",
"dangerous",
"toxic",
"battery",
"chemical",
"medicine",
"paint",
"pharmaceutical",
],
"Other Waste": [
"other",
"general",
"trash",
"garbage",
"waste",
"cigarette",
"ceramic",
"dust",
],
}
for category, keywords in category_keywords.items():
if any(keyword in response_lower for keyword in keywords):
return category
# If no clear classification found, default to "Unable to classify"
return "Unable to classify"
def _format_response(self, classification: str, full_response: str) -> str:
"""Format the response with classification and reasoning"""
if not full_response.strip():
return f"**Classification**: {classification}\n**Reasoning**: No detailed analysis available."
# If response already contains structured format, return as is
if "**Classification**" in full_response and "**Reasoning**" in full_response:
return full_response
# Otherwise, format it
return f"**Classification**: {classification}\n\n**Reasoning**: {full_response}"
def get_categories_info(self):
"""Get information about all categories"""
return self.knowledge.get_category_descriptions()
|