File size: 9,477 Bytes
9390992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e7478
9390992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e7478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9390992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e7478
9390992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from transformers import AutoProcessor, AutoModelForImageTextToText
from PIL import Image
import torch
import logging
from typing import Union, Tuple
from config import Config
from knowledge_base import GarbageClassificationKnowledge


class GarbageClassifier:
    def __init__(self, config: Config = None):
        self.config = config or Config()
        self.knowledge = GarbageClassificationKnowledge()
        self.processor = None
        self.model = None
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        # Setup logging
        logging.basicConfig(level=logging.INFO)
        self.logger = logging.getLogger(__name__)

    def load_model(self):
        """Load the model and processor"""
        try:
            self.logger.info(f"Loading model: {self.config.MODEL_NAME}")

            # Load processor
            kwargs = {}
            if self.config.HF_TOKEN:
                kwargs["token"] = self.config.HF_TOKEN

            self.processor = AutoProcessor.from_pretrained(
                self.config.MODEL_NAME, **kwargs
            )

            # Load model
            self.model = AutoModelForImageTextToText.from_pretrained(
                self.config.MODEL_NAME,
                torch_dtype=self.config.TORCH_DTYPE,
                device_map=self.config.DEVICE_MAP,
            )

            self.logger.info("Model loaded successfully")

        except Exception as e:
            self.logger.error(f"Error loading model: {str(e)}")
            raise

    def preprocess_image(self, image: Image.Image) -> Image.Image:
        """
        Preprocess image to meet Gemma3n requirements (512x512)
        """
        # Convert to RGB if necessary
        if image.mode != "RGB":
            image = image.convert("RGB")

        # Resize to 512x512 as required by Gemma3n
        target_size = (512, 512)

        # Calculate aspect ratio preserving resize
        original_width, original_height = image.size
        aspect_ratio = original_width / original_height

        if aspect_ratio > 1:
            # Width is larger
            new_width = target_size[0]
            new_height = int(target_size[0] / aspect_ratio)
        else:
            # Height is larger or equal
            new_height = target_size[1]
            new_width = int(target_size[1] * aspect_ratio)

        # Resize image maintaining aspect ratio
        image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)

        # Create a new image with target size and paste the resized image
        processed_image = Image.new(
            "RGB", target_size, (255, 255, 255)
        )  # White background

        # Calculate position to center the image
        x_offset = (target_size[0] - new_width) // 2
        y_offset = (target_size[1] - new_height) // 2

        processed_image.paste(image, (x_offset, y_offset))

        return processed_image

    def classify_image(self, image: Union[str, Image.Image]) -> Tuple[str, str]:
        """
        Classify garbage in the image

        Args:
            image: PIL Image or path to image file

        Returns:
            Tuple of (classification_result, full_response)
        """
        if self.model is None or self.processor is None:
            raise RuntimeError("Model not loaded. Call load_model() first.")

        try:
            # Load and process image
            if isinstance(image, str):
                image = Image.open(image)
            elif not isinstance(image, Image.Image):
                raise ValueError("Image must be a PIL Image or file path")

            # Preprocess image to meet Gemma3n requirements
            processed_image = self.preprocess_image(image)

            # Prepare messages with system prompt and user query
            messages = [
                {
                    "role": "system",
                    "content": [
                        {
                            "type": "text",
                            "text": self.knowledge.get_system_prompt(),
                        }
                    ],
                },
                {
                    "role": "user",
                    "content": [
                        {"type": "image", "image": processed_image},
                        {
                            "type": "text",
                            "text": "Please classify what you see in this image. If it shows garbage/waste items, classify them according to the garbage classification standards. If it shows people, living things, or other non-waste items, classify it as 'Unable to classify' and explain why it's not garbage.",
                        },
                    ],
                },
            ]

            # Apply chat template and tokenize
            inputs = self.processor.apply_chat_template(
                messages,
                add_generation_prompt=True,
                tokenize=True,
                return_dict=True,
                return_tensors="pt",
            ).to(self.model.device, dtype=self.model.dtype)
            input_len = inputs["input_ids"].shape[-1]

            outputs = self.model.generate(
                **inputs,
                max_new_tokens=self.config.MAX_NEW_TOKENS,
                disable_compile=True,
            )
            response = self.processor.batch_decode(
                outputs[:, input_len:],
                skip_special_tokens=True,
            )[0]

            # Extract classification from response
            classification = self._extract_classification(response)

            # Create formatted response
            formatted_response = self._format_response(classification, response)

            return classification, formatted_response

        except Exception as e:
            self.logger.error(f"Error during classification: {str(e)}")
            import traceback

            traceback.print_exc()
            return "Error", f"Classification failed: {str(e)}"

    def _extract_classification(self, response: str) -> str:
        """Extract the main classification from the response"""
        categories = self.knowledge.get_categories()

        # Convert response to lowercase for matching
        response_lower = response.lower()

        # First check for "Unable to classify" indicators
        unable_indicators = [
            "unable to classify",
            "cannot classify",
            "not garbage",
            "not waste",
            "person",
            "people",
            "human",
            "face",
            "living",
            "alive",
            "animal",
            "functioning",
            "in use",
            "working",
            "furniture",
            "appliance",
            "electronic device",
        ]

        if any(indicator in response_lower for indicator in unable_indicators):
            return "Unable to classify"

        # Look for exact category matches (excluding "Unable to classify" since we handled it above)
        waste_categories = [cat for cat in categories if cat != "Unable to classify"]
        for category in waste_categories:
            if category.lower() in response_lower:
                return category

        # Look for key terms if no exact match
        category_keywords = {
            "Recyclable Waste": [
                "recyclable",
                "recycle",
                "plastic",
                "paper",
                "metal",
                "glass",
                "bottle",
                "can",
                "aluminum",
                "cardboard",
            ],
            "Food/Kitchen Waste": [
                "food",
                "kitchen",
                "organic",
                "fruit",
                "vegetable",
                "leftovers",
                "scraps",
                "peel",
                "core",
                "bone",
            ],
            "Hazardous Waste": [
                "hazardous",
                "dangerous",
                "toxic",
                "battery",
                "chemical",
                "medicine",
                "paint",
                "pharmaceutical",
            ],
            "Other Waste": [
                "other",
                "general",
                "trash",
                "garbage",
                "waste",
                "cigarette",
                "ceramic",
                "dust",
            ],
        }

        for category, keywords in category_keywords.items():
            if any(keyword in response_lower for keyword in keywords):
                return category

        # If no clear classification found, default to "Unable to classify"
        return "Unable to classify"

    def _format_response(self, classification: str, full_response: str) -> str:
        """Format the response with classification and reasoning"""
        if not full_response.strip():
            return f"**Classification**: {classification}\n**Reasoning**: No detailed analysis available."

        # If response already contains structured format, return as is
        if "**Classification**" in full_response and "**Reasoning**" in full_response:
            return full_response

        # Otherwise, format it
        return f"**Classification**: {classification}\n\n**Reasoning**: {full_response}"

    def get_categories_info(self):
        """Get information about all categories"""
        return self.knowledge.get_category_descriptions()