Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,588 Bytes
9390992 22fa3c4 9390992 245587d 9390992 22fa3c4 9390992 22fa3c4 9390992 c86f4fa 9390992 1522e0a c86f4fa 245587d 1522e0a c86f4fa 1522e0a c86f4fa 1522e0a c86f4fa 1522e0a 245587d 1522e0a 22fa3c4 245587d 1522e0a 9390992 22fa3c4 c86f4fa 187dd30 d087a59 187dd30 22fa3c4 d087a59 c86f4fa d087a59 c86f4fa d087a59 c86f4fa d087a59 c86f4fa d087a59 c86f4fa d087a59 c86f4fa d087a59 c86f4fa d087a59 c86f4fa d087a59 c86f4fa d087a59 187dd30 9390992 8f8cb24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
from transformers import AutoProcessor, AutoModelForImageTextToText
from PIL import Image
import torch
import logging
from typing import Union, Tuple
from config import Config
from knowledge_base import GarbageClassificationKnowledge
class GarbageClassifier:
def __init__(self, config: Config = None):
self.config = config or Config()
self.knowledge = GarbageClassificationKnowledge()
self.processor = None
self.model = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Setup logging
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
def load_model(self):
"""Load the model and processor"""
try:
self.logger.info(f"Loading model: {self.config.MODEL_NAME}")
# Load processor
kwargs = {}
if self.config.HF_TOKEN:
kwargs["token"] = self.config.HF_TOKEN
self.processor = AutoProcessor.from_pretrained(
self.config.MODEL_NAME, **kwargs
)
# Load model
self.model = AutoModelForImageTextToText.from_pretrained(
self.config.MODEL_NAME,
torch_dtype=self.config.TORCH_DTYPE,
device_map=self.config.DEVICE_MAP,
)
self.logger.info("Model loaded successfully")
except Exception as e:
self.logger.error(f"Error loading model: {str(e)}")
raise
def preprocess_image(self, image: Image.Image) -> Image.Image:
"""
Preprocess image to meet Gemma3n requirements (512x512)
"""
# Convert to RGB if necessary
if image.mode != "RGB":
image = image.convert("RGB")
# Resize to 512x512 as required by Gemma3n
target_size = (512, 512)
# Calculate aspect ratio preserving resize
original_width, original_height = image.size
aspect_ratio = original_width / original_height
if aspect_ratio > 1:
# Width is larger
new_width = target_size[0]
new_height = int(target_size[0] / aspect_ratio)
else:
# Height is larger or equal
new_height = target_size[1]
new_width = int(target_size[1] * aspect_ratio)
# Resize image maintaining aspect ratio
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Create a new image with target size and paste the resized image
processed_image = Image.new(
"RGB", target_size, (255, 255, 255)
) # White background
# Calculate position to center the image
x_offset = (target_size[0] - new_width) // 2
y_offset = (target_size[1] - new_height) // 2
processed_image.paste(image, (x_offset, y_offset))
return processed_image
def classify_image(self, image: Union[str, Image.Image]) -> Tuple[str, str]:
"""
Classify garbage in the image
Args:
image: PIL Image or path to image file
Returns:
Tuple of (classification_result, detailed_analysis)
"""
if self.model is None or self.processor is None:
raise RuntimeError("Model not loaded. Call load_model() first.")
try:
# Load and process image
if isinstance(image, str):
image = Image.open(image)
elif not isinstance(image, Image.Image):
raise ValueError("Image must be a PIL Image or file path")
# Preprocess image to meet Gemma3n requirements
processed_image = self.preprocess_image(image)
# Prepare messages with system prompt and user query
messages = [
{
"role": "system",
"content": [
{
"type": "text",
"text": self.knowledge.get_system_prompt(),
}
],
},
{
"role": "user",
"content": [
{"type": "image", "image": processed_image},
{
"type": "text",
"text": "Please classify what you see in this image. If it shows garbage/waste items, classify them according to the garbage classification standards. If it shows people, living things, or other non-waste items, classify it as 'Unable to classify' and explain why it's not garbage.",
},
],
},
]
# Apply chat template and tokenize
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(self.model.device, dtype=self.model.dtype)
input_len = inputs["input_ids"].shape[-1]
outputs = self.model.generate(
**inputs,
max_new_tokens=self.config.MAX_NEW_TOKENS,
disable_compile=True,
)
response = self.processor.batch_decode(
outputs[:, input_len:],
skip_special_tokens=True,
)[0]
# Extract classification from response
classification = self._extract_classification(response)
# Extract reasoning from response
reasoning = self._extract_reasoning(response)
return classification, reasoning
except Exception as e:
self.logger.error(f"Error during classification: {str(e)}")
import traceback
traceback.print_exc()
return "Error", f"Classification failed: {str(e)}"
def _extract_classification(self, response: str) -> str:
"""Extract the main classification from the response"""
response_lower = response.lower()
# First, look for positive waste category indicators
# Check exact category matches first
categories = self.knowledge.get_categories()
waste_categories = [cat for cat in categories if cat != "Unable to classify"]
for category in waste_categories:
if category.lower() in response_lower:
# Make sure it's not in a negative context
category_index = response_lower.find(category.lower())
context_before = response_lower[max(0, category_index-30):category_index]
# Only skip if there's a clear negation right before
if not any(neg in context_before[-10:] for neg in ["not", "cannot", "isn't", "doesn't"]):
return category
# Look for strong recyclable indicators
recyclable_indicators = [
"recyclable", "recycle", "aluminum", "plastic", "glass", "metal",
"foil", "can", "bottle", "cardboard", "paper", "tin", "steel", "iron"
]
if any(indicator in response_lower for indicator in recyclable_indicators):
# Check if it's explicitly said to be recyclable
recyclable_phrases = [
"recyclable", "can be recycled", "made of recyclable",
"recyclable material", "recyclable aluminum", "recyclable plastic"
]
if any(phrase in response_lower for phrase in recyclable_phrases):
return "Recyclable Waste"
# Check for specific materials
if any(material in response_lower for material in ["aluminum", "foil", "metal"]):
return "Recyclable Waste"
if any(material in response_lower for material in ["plastic", "bottle"]):
return "Recyclable Waste"
if any(material in response_lower for material in ["glass", "cardboard", "paper"]):
return "Recyclable Waste"
# Look for food waste indicators
food_indicators = [
"food", "fruit", "vegetable", "organic", "kitchen waste",
"peel", "core", "scraps", "leftovers"
]
if any(indicator in response_lower for indicator in food_indicators):
return "Food/Kitchen Waste"
# Look for hazardous waste indicators
hazardous_indicators = [
"battery", "chemical", "medicine", "paint", "toxic", "hazardous"
]
if any(indicator in response_lower for indicator in hazardous_indicators):
return "Hazardous Waste"
# Look for other waste indicators
other_waste_indicators = [
"cigarette", "ceramic", "dust", "diaper", "tissue", "other waste"
]
if any(indicator in response_lower for indicator in other_waste_indicators):
return "Other Waste"
# Only classify as "Unable to classify" if there are explicit indicators
unable_phrases = [
"unable to classify",
"cannot classify",
"cannot be classified as waste",
"not garbage", "not waste", "not trash"
]
if any(phrase in response_lower for phrase in unable_phrases):
return "Unable to classify"
# Check for non-garbage items (people, living things, etc.)
non_garbage_indicators = [
"person", "people", "human", "face", "man", "woman",
"living", "alive", "animal", "pet",
"portrait", "photo of a person"
]
if any(indicator in response_lower for indicator in non_garbage_indicators):
return "Unable to classify"
# If we found waste-related content but no clear category, try to infer
waste_related = any(word in response_lower for word in [
"waste", "trash", "garbage", "discard", "throw", "bin"
])
if waste_related:
# Default to Other Waste if it's clearly waste but unclear category
return "Other Waste"
# If no clear classification found and no clear non-waste indicators,
# default to "Unable to classify"
return "Unable to classify"
def _extract_reasoning(self, response: str) -> str:
"""Extract only the reasoning content, removing all formatting markers and classification info"""
import re
# Remove all formatting markers
cleaned_response = response.replace("**Classification**:", "")
cleaned_response = cleaned_response.replace("**Reasoning**:", "")
cleaned_response = re.sub(r'\*\*.*?\*\*:', '', cleaned_response) # Remove any **text**: patterns
cleaned_response = cleaned_response.replace("**", "") # Remove remaining ** markers
# Remove category names that might appear at the beginning
categories = self.knowledge.get_categories()
for category in categories:
if cleaned_response.strip().startswith(category):
cleaned_response = cleaned_response.replace(category, "", 1)
break
# Remove common material names that might appear at the beginning
material_names = [
"Glass", "Plastic", "Metal", "Paper", "Cardboard", "Aluminum",
"Steel", "Iron", "Tin", "Foil", "Wood", "Ceramic", "Fabric",
"Recyclable Waste", "Food/Kitchen Waste", "Hazardous Waste", "Other Waste"
]
# Clean the response
cleaned_response = cleaned_response.strip()
# Remove material names at the beginning
for material in material_names:
if cleaned_response.startswith(material):
# Remove the material name and any following punctuation/whitespace
cleaned_response = cleaned_response[len(material):].lstrip(" .,;:")
break
# Split into sentences and clean up
sentences = []
# Split by common sentence endings, but keep the endings
parts = re.split(r'([.!?])\s+', cleaned_response)
# Rejoin parts to maintain sentence structure
reconstructed_parts = []
for i in range(0, len(parts), 2):
if i < len(parts):
sentence = parts[i]
if i + 1 < len(parts):
sentence += parts[i + 1] # Add the punctuation back
reconstructed_parts.append(sentence)
for part in reconstructed_parts:
part = part.strip()
if not part:
continue
# Skip parts that are just category names or material names
if part in categories or part.rstrip(".,;:") in material_names:
continue
# Skip parts that start with category names or material names
is_category_line = False
for item in categories + material_names:
if part.startswith(item):
is_category_line = True
break
if is_category_line:
continue
# Clean up the sentence
part = re.sub(r'^[A-Za-z\s]+:', '', part).strip() # Remove "Category:" type prefixes
if part and len(part) > 3: # Only keep meaningful content
sentences.append(part)
# Join sentences
reasoning = ' '.join(sentences)
# Final cleanup - remove any remaining standalone material words at the beginning
reasoning_words = reasoning.split()
if reasoning_words and reasoning_words[0] in [m.lower() for m in material_names]:
reasoning_words = reasoning_words[1:]
reasoning = ' '.join(reasoning_words)
# Ensure proper capitalization
if reasoning:
reasoning = reasoning[0].upper() + reasoning[1:] if len(reasoning) > 1 else reasoning.upper()
# Ensure proper punctuation
if not reasoning.endswith(('.', '!', '?')):
reasoning += '.'
return reasoning if reasoning else "Analysis not available"
def get_categories_info(self):
"""Get information about all categories"""
return self.knowledge.get_category_descriptions()
|