HMWCS's picture
feat: enhance mixed garbage detection and food residue assessment
702c64f verified
from transformers import AutoProcessor, AutoModelForImageTextToText
from PIL import Image
import torch
import logging
from typing import Union, Tuple
from config import Config
from knowledge_base import GarbageClassificationKnowledge
import re
def preprocess_image(image: Image.Image) -> Image.Image:
"""
Preprocess image to meet Gemma3n requirements (512x512)
"""
# Convert to RGB if necessary
if image.mode != "RGB":
image = image.convert("RGB")
# Resize to 512x512 as required by Gemma3n
target_size = (512, 512)
# Calculate aspect ratio preserving resize
original_width, original_height = image.size
aspect_ratio = original_width / original_height
if aspect_ratio > 1:
# Width is larger
new_width = target_size[0]
new_height = int(target_size[0] / aspect_ratio)
else:
# Height is larger or equal
new_height = target_size[1]
new_width = int(target_size[1] * aspect_ratio)
# Resize image maintaining aspect ratio
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Create a new image with target size and paste the resized image
processed_image = Image.new(
"RGB", target_size, (255, 255, 255)
) # White background
# Calculate position to center the image
x_offset = (target_size[0] - new_width) // 2
y_offset = (target_size[1] - new_height) // 2
processed_image.paste(image, (x_offset, y_offset))
return processed_image
class GarbageClassifier:
def __init__(self, config: Config = None):
self.config = config or Config()
self.knowledge = GarbageClassificationKnowledge()
self.processor = None
self.model = None
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Setup logging
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
def load_model(self):
"""Load the model and processor"""
try:
self.logger.info(f"Loading model: {self.config.MODEL_NAME}")
# Load processor
kwargs = {}
if self.config.HF_TOKEN:
kwargs["token"] = self.config.HF_TOKEN
self.processor = AutoProcessor.from_pretrained(
self.config.MODEL_NAME, **kwargs
)
# Load model
self.model = AutoModelForImageTextToText.from_pretrained(
self.config.MODEL_NAME,
torch_dtype=self.config.TORCH_DTYPE,
device_map=self.config.DEVICE_MAP,
)
self.logger.info("Model loaded successfully")
except Exception as e:
self.logger.error(f"Error loading model: {str(e)}")
raise
def classify_image(self, image: Union[str, Image.Image]) -> Tuple[str, str, int]:
"""
Classify garbage in the image
Args:
image: PIL Image or path to image file
Returns:
Tuple of (classification_result, detailed_analysis, confidence_score)
"""
if self.model is None or self.processor is None:
raise RuntimeError("Model not loaded. Call load_model() first.")
try:
# Load and process image
if isinstance(image, str):
image = Image.open(image)
elif not isinstance(image, Image.Image):
raise ValueError("Image must be a PIL Image or file path")
# Preprocess image to meet Gemma3n requirements
processed_image = preprocess_image(image)
# Prepare messages with system prompt and user query
messages = [
{
"role": "system",
"content": [
{
"type": "text",
"text": self.knowledge.get_system_prompt(),
}
],
},
{
"role": "user",
"content": [
{"type": "image", "image": processed_image},
{
"type": "text",
"text": "Please classify what you see in this image. If it shows garbage/waste items, classify them according to the garbage classification standards. If it shows people, living things, or other non-waste items, classify it as 'Unable to classify' and explain why it's not garbage. Also provide a confidence score from 1-10 indicating how certain you are about your classification.",
},
],
},
]
# Apply chat template and tokenize
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(self.model.device, dtype=self.model.dtype)
input_len = inputs["input_ids"].shape[-1]
outputs = self.model.generate(
**inputs,
max_new_tokens=self.config.MAX_NEW_TOKENS,
disable_compile=True,
)
response = self.processor.batch_decode(
outputs[:, input_len:],
skip_special_tokens=True,
)[0]
# Extract classification from response
classification = self._extract_classification(response)
# Extract reasoning from response
reasoning = self._extract_reasoning(response)
# Extract confidence score from response
confidence_score = self._extract_confidence_score(response, classification)
return classification, reasoning, confidence_score
except Exception as e:
self.logger.error(f"Error during classification: {str(e)}")
import traceback
traceback.print_exc()
return "Error", f"Classification failed: {str(e)}", 0
def _calculate_confidence_heuristic(self, response_lower: str, classification: str) -> int:
"""Calculate confidence based on response content and classification type"""
base_confidence = 5
# Confidence indicators (increase confidence)
high_confidence_words = ["clearly", "obviously", "definitely", "certainly", "exactly"]
medium_confidence_words = ["appears", "seems", "likely", "probably"]
# Uncertainty indicators (decrease confidence)
uncertainty_words = ["might", "could", "possibly", "maybe", "unclear", "difficult"]
# Adjust based on confidence words
for word in high_confidence_words:
if word in response_lower:
base_confidence += 2
break
for word in medium_confidence_words:
if word in response_lower:
base_confidence += 1
break
for word in uncertainty_words:
if word in response_lower:
base_confidence -= 2
break
# Classification-specific adjustments
if classification == "Unable to classify":
if any(indicator in response_lower for indicator in ["person", "people", "human", "living"]):
base_confidence += 1 # High confidence when clearly not waste
else:
base_confidence -= 1 # Lower confidence for unclear items
elif classification == "Error":
base_confidence = 1
else:
# Check for specific material mentions (increases confidence)
specific_materials = ["aluminum", "plastic", "glass", "metal", "cardboard", "paper"]
if any(material in response_lower for material in specific_materials):
base_confidence += 1
return min(max(base_confidence, 1), 10)
def _extract_confidence_score(self, response: str, classification: str) -> int:
"""Extract confidence score from response or calculate based on classification"""
response_lower = response.lower()
# Look for explicit confidence scores in the response
confidence_patterns = [
r'\*\*confidence score\*\*[:\s]*(\d+)', # For **Confidence Score**: format
r'confidence[:\s]*(\d+)',
r'confident[:\s]*(\d+)',
r'certainty[:\s]*(\d+)',
r'score[:\s]*(\d+)',
r'(\d+)/10',
r'(\d+)\s*out\s*of\s*10'
]
for pattern in confidence_patterns:
match = re.search(pattern, response_lower)
if match:
score = int(match.group(1))
return min(max(score, 1), 10) # Clamp between 1-10
# If no explicit score found, calculate based on classification indicators
return self._calculate_confidence_heuristic(response_lower, classification)
def _extract_classification(self, response: str) -> str:
"""Extract the main classification from the response - trust Gemma 3n intelligence more"""
response_lower = response.lower()
# Primary: Trust explicit category mentions from Gemma 3n
categories = self.knowledge.get_categories()
for category in categories:
if category.lower() in response_lower:
# Simple negation check
category_index = response_lower.find(category.lower())
context_before = response_lower[max(0, category_index - 20):category_index]
if not any(neg in context_before[-10:] for neg in ["not", "cannot", "isn't"]):
return category
# Secondary: Look for explicit mixed garbage warnings from model
mixed_warnings = [
"multiple garbage types detected",
"separate items",
"different garbage types",
"mixed together"
]
if any(warning in response_lower for warning in mixed_warnings):
return "Unable to classify"
# Tertiary: Basic material detection (simplified)
if any(material in response_lower for material in
["recyclable", "aluminum", "plastic", "glass", "metal", "cardboard"]):
# Check for contamination
if any(cont in response_lower for cont in ["obvious food", "substantial residue", "chunks", "liquids"]):
return "Food/Kitchen Waste"
return "Recyclable Waste"
if any(food in response_lower for food in ["food", "organic", "kitchen", "fruit", "vegetable"]):
return "Food/Kitchen Waste"
if any(hazard in response_lower for hazard in ["battery", "hazardous", "chemical", "toxic"]):
return "Hazardous Waste"
if any(other in response_lower for other in ["cigarette", "ceramic", "styrofoam"]):
return "Other Waste"
# Non-garbage detection
if any(non_garbage in response_lower for non_garbage in ["person", "people", "human", "living", "animal"]):
return "Unable to classify"
# Final fallback - let Gemma 3n's reasoning guide us
if any(unable in response_lower for unable in ["unable to classify", "cannot classify", "not garbage"]):
return "Unable to classify"
# Default to Unable to classify if unclear
return "Unable to classify"
def _extract_reasoning(self, response: str) -> str:
"""Extract only the reasoning content, removing all formatting markers and classification info"""
import re
# Remove all formatting markers
cleaned_response = response.replace("**Classification**:", "")
cleaned_response = cleaned_response.replace("**Reasoning**:", "")
cleaned_response = re.sub(r'\*\*.*?\*\*:', '', cleaned_response) # Remove any **text**: patterns
cleaned_response = cleaned_response.replace("**", "") # Remove remaining ** markers
# Remove category names that might appear at the beginning
categories = self.knowledge.get_categories()
for category in categories:
if cleaned_response.strip().startswith(category):
cleaned_response = cleaned_response.replace(category, "", 1)
break
# Remove common material names that might appear at the beginning
material_names = [
"Glass", "Plastic", "Metal", "Paper", "Cardboard", "Aluminum",
"Steel", "Iron", "Tin", "Foil", "Wood", "Ceramic", "Fabric",
"Recyclable Waste", "Food/Kitchen Waste", "Hazardous Waste", "Other Waste"
]
# Clean the response
cleaned_response = cleaned_response.strip()
# Remove material names at the beginning
for material in material_names:
if cleaned_response.startswith(material):
# Remove the material name and any following punctuation/whitespace
cleaned_response = cleaned_response[len(material):].lstrip(" .,;:")
break
# Split into sentences and clean up
sentences = []
# Split by common sentence endings, but keep the endings
parts = re.split(r'([.!?])\s+', cleaned_response)
# Rejoin parts to maintain sentence structure
reconstructed_parts = []
for i in range(0, len(parts), 2):
if i < len(parts):
sentence = parts[i]
if i + 1 < len(parts):
sentence += parts[i + 1] # Add the punctuation back
reconstructed_parts.append(sentence)
for part in reconstructed_parts:
part = part.strip()
if not part:
continue
# Skip parts that are just category names or material names
if part in categories or part.rstrip(".,;:") in material_names:
continue
# Skip parts that start with category names or material names
is_category_line = False
for item in categories + material_names:
if part.startswith(item):
is_category_line = True
break
if is_category_line:
continue
# Clean up the sentence
part = re.sub(r'^[A-Za-z\s]+:', '', part).strip() # Remove "Category:" type prefixes
if part and len(part) > 3: # Only keep meaningful content
sentences.append(part)
# Join sentences
reasoning = ' '.join(sentences)
# Final cleanup - remove any remaining standalone material words at the beginning
reasoning_words = reasoning.split()
if reasoning_words and reasoning_words[0] in [m.lower() for m in material_names]:
reasoning_words = reasoning_words[1:]
reasoning = ' '.join(reasoning_words)
# Ensure proper capitalization
if reasoning:
reasoning = reasoning[0].upper() + reasoning[1:] if len(reasoning) > 1 else reasoning.upper()
# Ensure proper punctuation
if not reasoning.endswith(('.', '!', '?')):
reasoning += '.'
return reasoning if reasoning else "Analysis not available"
def get_categories_info(self):
"""Get information about all categories"""
return self.knowledge.get_category_descriptions()