Spaces:
Running
Running
File size: 19,692 Bytes
711a69b 05222de 65e4811 0762cf8 05222de 711a69b 05222de 65e4811 aaf0c71 b20457b 711a69b becd2f0 aaf0c71 711a69b aaf0c71 711a69b 8e9d8db 711a69b becd2f0 711a69b 65e4811 711a69b 65e4811 711a69b 8e9d8db 711a69b 65e4811 aaf0c71 711a69b aaf0c71 711a69b aaf0c71 cc18a4c aaf0c71 cc18a4c 8e9d8db cc18a4c aaf0c71 cc18a4c 711a69b cc18a4c 65e4811 711a69b 65e4811 a25be15 711a69b a25be15 711a69b 65e4811 711a69b 65e4811 711a69b aaf0c71 65e4811 711a69b 65e4811 711a69b 65e4811 711a69b 3e202b5 65e4811 711a69b 3e202b5 65e4811 711a69b 65e4811 711a69b 3e202b5 711a69b 3e202b5 65e4811 711a69b c94926c 711a69b 65e4811 711a69b 8e9d8db aaf0c71 8e9d8db 711a69b e996c33 711a69b 1df4c13 711a69b 388e11b 1df4c13 05222de 71c4da9 fce1a0c 388e11b e70391f 71c4da9 fce1a0c 388e11b 425eb6f 71c4da9 fce1a0c 388e11b 1df4c13 42bec98 388e11b 711a69b 65e4811 aaf0c71 8e9d8db 711a69b aaf0c71 711a69b aaf0c71 711a69b 65e4811 711a69b 65e4811 2a6282d e996c33 711a69b cf4f8a2 711a69b 59a97a5 0bdaa79 59a97a5 0bdaa79 711a69b 9b52407 711a69b 1833d81 aaf0c71 a25be15 711a69b a25be15 711a69b 218e8a1 711a69b 73cf0ca 45b9051 711a69b 73cf0ca f73e511 becd2f0 f73e511 73cf0ca e500b12 73cf0ca 559ad26 b410573 73cf0ca 559ad26 73cf0ca 559ad26 73cf0ca 3e202b5 8275743 9ec240c 2105073 9ec240c 73cf0ca 1df4c13 73cf0ca 711a69b 65e4811 711a69b 65e4811 e996c33 711a69b e996c33 a25be15 711a69b 65e4811 711a69b 65e4811 c94926c 711a69b 65e4811 c94926c 711a69b 3e202b5 711a69b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
import sys
import gradio as gr
import pandas as pd
import plotly.express as px
from gradio.themes.utils import colors
from results.parse import parse_agg, read_data
from static.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
from style.css_html_js import custom_css
from utils import filter_bench, filter_bench_all, filter_RTLRepo, handle_special_cases
def filter_leaderboard(task, benchmark, model_type, search_query, max_params):
subset = df.copy()
# Filter by task specific benchmarks when 'All' benchmarks is selected
if task == "Spec-to-RTL":
valid_benchmarks = s2r_benchs
if benchmark == "All":
subset = subset[subset["Benchmark"].isin(valid_benchmarks)]
elif task == "Code Completion":
valid_benchmarks = cc_benchs
if benchmark == "All":
subset = subset[subset["Benchmark"].isin(valid_benchmarks)]
elif task == "Line Completion":
valid_benchmarks = lc_benchs
if benchmark == "All":
subset = subset[subset["Benchmark"].isin(valid_benchmarks)]
if benchmark != "All":
subset = df[df["Benchmark"] == benchmark]
if model_type != "All":
# without emojis
subset = subset[subset["Model Type"] == model_type.split(" ")[0]]
if search_query:
subset = subset[
subset["Model"].str.contains(search_query, case=False, na=False)
]
max_params = float(max_params)
subset = subset[subset["Params"] <= max_params]
if benchmark == "All":
if task == "Spec-to-RTL":
return filter_bench_all(subset, df_agg, agg_column="Agg S2R")
elif task == "Code Completion":
return filter_bench_all(subset, df_agg, agg_column="Agg MC")
elif task == "Line Completion":
return filter_RTLRepo(subset)
elif benchmark == "RTL-Repo":
return filter_RTLRepo(subset)
else:
agg_column = None
if benchmark == "VerilogEval S2R":
agg_column = "Agg VerilogEval S2R"
elif benchmark == "VerilogEval MC":
agg_column = "Agg VerilogEval MC"
elif benchmark == "RTLLM":
agg_column = "Agg RTLLM"
elif benchmark == "VeriGen":
agg_column = "Agg VeriGen"
return filter_bench(subset, df_agg, agg_column)
def update_benchmarks_by_task(task):
if task == "Spec-to-RTL":
new_benchmarks = ["All"] + s2r_benchs
elif task == "Code Completion":
new_benchmarks = ["All"] + cc_benchs
elif task == "Line Completion":
new_benchmarks = lc_benchs
else:
new_benchmarks = ["All"] + benchmarks
benchmark_value = "All" if "All" in new_benchmarks else new_benchmarks[0]
filtered = filter_leaderboard(
task,
benchmark_value,
model_type_dropdown.value,
search_box.value,
params_slider.value,
)
return gr.update(value=benchmark_value, choices=new_benchmarks), filtered
def generate_scatter_plot(benchmark, metric):
benchmark, metric = handle_special_cases(benchmark, metric)
subset = df[df["Benchmark"] == benchmark]
if benchmark == "RTL-Repo":
subset = subset[subset["Metric"].str.contains("EM", case=False, na=False)]
detailed_scores = subset.groupby("Model", as_index=False)["Score"].mean()
detailed_scores.rename(columns={"Score": "Exact Matching (EM)"}, inplace=True)
else:
detailed_scores = subset.pivot_table(
index="Model", columns="Metric", values="Score"
).reset_index()
details = df[["Model", "Params", "Model Type"]].drop_duplicates("Model")
scatter_data = pd.merge(detailed_scores, details, on="Model", how="left").dropna(
subset=["Params", metric]
)
scatter_data["x"] = scatter_data["Params"]
scatter_data["y"] = scatter_data[metric]
scatter_data["size"] = (scatter_data["x"] ** 0.3) * 40
type_colors = {"General": "green", "Coding": "yellow", "RTL-Specific": "blue"}
scatter_data["color"] = scatter_data["Model Type"].map(type_colors).fillna("gray")
y_axis_limits = {
"Functionality (FNC)": [5, 90],
"Syntax (STX)": [20, 100],
"Synthesis (SYN)": [5, 90],
"Power": [0, 50],
"Performance": [0, 50],
"Area": [0, 50],
"Exact Matching (EM)": [0, 50],
}
y_range = y_axis_limits.get(metric, [0, 80])
fig = px.scatter(
scatter_data,
x="x",
y="y",
log_x=True,
size="size",
color="Model Type",
text="Model",
hover_data={metric: ":.2f"},
title=f"Params vs. {metric} for {benchmark}",
labels={"x": "# Params (Log Scale)", "y": metric},
template="plotly_white",
height=600,
width=1200,
)
fig.update_traces(
textposition="top center",
textfont_size=10,
marker=dict(opacity=0.8, line=dict(width=0.5, color="black")),
)
fig.update_layout(
xaxis=dict(
showgrid=True,
type="log",
tickmode="array",
tickvals=[8, 14, 32, 72, 200, 700],
ticktext=["8", "14", "32", "72", "200", "700"],
),
showlegend=False,
yaxis=dict(range=y_range),
margin=dict(l=50, r=50, t=50, b=50),
plot_bgcolor="white",
)
return fig
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
with gr.Blocks(
css=custom_css, js=js_func, theme=gr.themes.Default(primary_hue=colors.emerald)
) as app:
df, benchmarks, metrics, default_metric = read_data()
df_agg = parse_agg("./results/aggregated_scores.csv")
tasks = ["Spec-to-RTL", "Code Completion", "Line Completion"]
s2r_benchs = ["VerilogEval S2R", "RTLLM"]
cc_benchs = ["VerilogEval MC", "VeriGen"]
lc_benchs = ["RTL-Repo"]
non_rtl_metrics = [
"Syntax (STX)",
"Functionality (FNC)",
"Synthesis (SYN)",
"Power",
"Performance",
"Area",
]
rtl_metrics = ["Exact Matching (EM)"]
model_types = ["All", "General 🟢", "Coding 🔵", "RTL-Specific 🔴"]
gr.HTML(
"""
<div align="center">
<img src='/gradio_api/file=logo.png' alt='TuRTLe Logo' width='220'/>
</div>
"""
)
gr.HTML(
"""
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css">
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/js/all.min.js"></script>
<div style="text-align: center; margin-bottom: 0px; margin-top: 0px;">
<a href="https://github.com/HPAI-BSC/TuRTLe" target="_blank" style="text-decoration: none; margin-right: 10px;">
<button style="background: #333; color: white; padding: 10px 14px; border-radius: 8px; border: none; font-size: 16px; cursor: pointer;">
GitHub Repo
</button>
</a>
<a href="http://arxiv.org/abs/2504.01986" target="_blank" style="text-decoration: none; margin-right: 10px;">
<button style="background: #b31b1b; color: white; padding: 10px 14px; border-radius: 8px; border: none; font-size: 16px; cursor: pointer;">
arXiv Preprint
</button>
</a>
<a href="mailto:hpai@bsc.es?subject=TuRTLe%20leaderboard%20new%20entry&body=Link%20to%20HuggingFace%20Model:" style="text-decoration: none;">
<button style="background: #00674F; color: white; padding: 10px 14px; border-radius: 8px; border: none; font-size: 16px; cursor: pointer;">
How to submit
</button>
</a>
<p style="margin-top: 15px;">If you have any inquiries or wish to collaborate:
<a href="mailto:hpai@bsc.es">hpai@bsc.es</a>
</p>
</div>
"""
)
gr.HTML(
"""
<div style=" margin-top:-10px !important;">
<p style="margin-bottom: 15px; text-align: start !important;">Welcome to the TuRTLe Model Leaderboard! TuRTLe is a <b>unified evaluation framework designed to systematically assess Large Language Models (LLMs) in RTL (Register-Transfer Level) generation</b> for hardware design.
Evaluation criteria include <b>syntax correctness, functional accuracy, synthesizability, and post-synthesis quality</b> (PPA: Power, Performance, Area). TuRTLe integrates multiple benchmarks to highlight strengths and weaknesses of available LLMs.
Use the filters below to explore different RTL benchmarks and models.</p>
<p style="margin-top: 15px; text-align: start !important; "><span style="font-variant: small-caps; font-weight: bold;">NEW UPDATE (JUNE 2025)</span>: We make our framework open-source on GitHub, and add 7 new recent models! For a total of 40 base and instruct models and 5 RTL benchmarks.</p>
</div>
"""
)
with gr.Tabs():
with gr.Tab("Leaderboard"):
with gr.Row(equal_height=True):
with gr.Column():
task_radio = gr.Radio(
choices=tasks, label="Select Task", value="Spec-to-RTL"
)
with gr.Column():
benchmark_radio = gr.Radio(
choices=["All"] + s2r_benchs,
label="Select Benchmark",
value="All",
)
with gr.Row(equal_height=True):
search_box = gr.Textbox(
label="Search Model",
placeholder="Type model name...",
scale=2,
)
model_type_dropdown = gr.Radio(
choices=model_types,
label="Select Model Type",
value="All",
scale=3,
)
params_slider = gr.Slider(
minimum=df["Params"].min(),
maximum=700,
value=700,
label="Max Params",
step=1,
scale=2,
)
leaderboard = gr.DataFrame(
value=filter_leaderboard("Spec-to-RTL", "All", "All", "", 700),
headers="first row",
show_row_numbers=True,
wrap=True,
datatype=[
"markdown",
"html",
],
interactive=False,
column_widths=[
"7%",
"24%",
"17%",
"10%",
"13%",
"10%",
"14%",
],
elem_classes="dataframe-leaderboard",
)
with gr.Tab("Plot View"):
with gr.Row(equal_height=True):
default_benchmark = s2r_benchs[0]
bubble_benchmark = gr.Dropdown(
choices=benchmarks,
label="Select Benchmark",
value=default_benchmark,
elem_classes="gr-dropdown",
)
default_metric = non_rtl_metrics[0]
bubble_metric = gr.Dropdown(
choices=non_rtl_metrics,
label="Select Metric",
value=default_metric,
)
with gr.Row(equal_height=True):
scatter_plot = gr.Plot(
value=generate_scatter_plot(default_benchmark, default_metric),
label="Bubble Chart",
elem_id="full-width-plot",
)
with gr.Tab("Metrics Information"):
with open("./static/metrics.md", "r") as file:
gr.Markdown(
file.read(),
latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False},
],
elem_classes="metrics-page",
)
with gr.Tab("About Us"):
gr.HTML(
"""
<div style="max-width: 800px; margin: auto; padding: 20px; border: 1px solid #ccc; border-radius: 10px;">
<div style="display: flex; justify-content: center; align-items: center; gap: 5%; margin-bottom: 20px;">
<img src='/gradio_api/file=hpai_logo_grad.png' alt='HPAI Group Logo' style="width: 45%;"/>
<img src='/gradio_api/file=bsc-logo.png' alt='BSC Logo' style="width: 25%;"/>
</div>
<p style="font-size: 16px; text-align: start;">
The <b>High-Performance Artificial Intelligence (HPAI)</b> group is part of the
<a href="https://bsc.es/" target="_blank">Barcelona Supercomputing Center (BSC)</a>.
This leaderboard is maintained by HPAI as part of our commitment to <b>open science</b>.
</p>
<ul style="font-size: 16px; margin-bottom: 20px; margin-top: 20px;">
<li><a href="https://hpai.bsc.es/" target="_blank">HPAI Website</a></li>
<li><a href="https://github.com/HPAI-BSC/" target="_blank">HPAI GitHub Organization Page</a></li>
<li><a href="https://huggingface.co/HPAI-BSC/" target="_blank">HPAI Hugging Face Organization Page</a></li>
</ul>
<p style="font-size: 16px; margin-top: 15px;">
Feel free to contact us:
</p>
<p style="font-size: 16px;">Email: <a href="mailto:hpai@bsc.es"><b>hpai@bsc.es</b></a></p>
</div>
"""
)
with gr.Tab("References"):
gr.HTML(
"""
<div style="max-width: 800px; margin: auto; padding: 20px; border: 1px solid #ccc; border-radius: 10px;">
<ul style="font-size: 16px; margin-bottom: 20px; margin-top: 20px;">
<li><a href="https://github.com/bigcode-project/bigcode-evaluation-harness" target="_blank">Code Generation LM Evaluation Harness</a></li>
<li>RTL-Repo: Allam and M. Shalan, “Rtl-repo: A benchmark for evaluating llms on large-scale rtl design projects,” in 2024 IEEE LLM Aided Design Workshop (LAD). IEEE, 2024, pp. 1–5.</li>
<li>VeriGen: S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri, and S. Garg, “Verigen: A large language model for verilog code generation,” ACM Transactions on Design Automation of Electronic Systems, vol. 29, no. 3, pp. 1–31, 2024. </li>
<li>VerilogEval (I): M. Liu, N. Pinckney, B. Khailany, and H. Ren, “Verilogeval: Evaluating large language models for verilog code generation,” in 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE, 2023, pp. 1–8.</li>
<li>VerilogEval (II): N. Pinckney, C. Batten, M. Liu, H. Ren, and B. Khailany, “Revisiting VerilogEval: A Year of Improvements in Large-Language Models for Hardware Code Generation,” ACM Trans. Des. Autom. Electron. Syst., feb 2025. https://doi.org/10.1145/3718088</li>
<li>RTLLM: Y. Lu, S. Liu, Q. Zhang, and Z. Xie, “Rtllm: An open-source benchmark for design rtl generation with large language model,” in 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2024, pp. 722–727.</li>
</ul>
<p style="font-size: 16px; margin-top: 15px;">
Feel free to contact us:
</p>
</div>
"""
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=10,
elem_id="citation-button",
show_copy_button=True,
)
# event handlers, ugly way but it works
task_radio.change(
fn=update_benchmarks_by_task,
inputs=[task_radio],
outputs=[benchmark_radio, leaderboard],
)
benchmark_radio.change(
fn=filter_leaderboard,
inputs=[
task_radio,
benchmark_radio,
model_type_dropdown,
search_box,
params_slider,
],
outputs=leaderboard,
)
model_type_dropdown.change(
fn=filter_leaderboard,
inputs=[
task_radio,
benchmark_radio,
model_type_dropdown,
search_box,
params_slider,
],
outputs=leaderboard,
)
search_box.change(
fn=filter_leaderboard,
inputs=[
task_radio,
benchmark_radio,
model_type_dropdown,
search_box,
params_slider,
],
outputs=leaderboard,
)
params_slider.change(
fn=filter_leaderboard,
inputs=[
task_radio,
benchmark_radio,
model_type_dropdown,
search_box,
params_slider,
],
outputs=leaderboard,
)
def on_benchmark_change(benchmark, _):
if benchmark == "RTL-Repo":
metric = "Exact Matching (EM)"
return gr.update(choices=rtl_metrics, value=metric), generate_scatter_plot(
benchmark, metric
)
else:
metric = non_rtl_metrics[0]
return gr.update(
choices=non_rtl_metrics[:-1], value=metric
), generate_scatter_plot(benchmark, metric)
def on_metric_change(benchmark, metric):
benchmark, metric = handle_special_cases(benchmark, metric)
fig = generate_scatter_plot(benchmark, metric)
return gr.update(value=benchmark), fig
bubble_benchmark.change(
fn=on_benchmark_change,
inputs=[bubble_benchmark, bubble_metric],
outputs=[bubble_metric, scatter_plot],
js=""" // this is to avoid resetting user scroll each time a plot is re-generated
(benchmark, metric) => {
let scrollY = window.scrollY;
const observer = new MutationObserver(() => {
window.scrollTo(0, scrollY);
observer.disconnect();
});
observer.observe(document.getElementById('full-width-plot'), { childList: true });
return [benchmark, metric];
}
""",
)
bubble_metric.change(
fn=on_metric_change,
inputs=[bubble_benchmark, bubble_metric],
outputs=[bubble_benchmark, scatter_plot],
js=""" // this is to avoid resetting user scroll each time a plot is re-generated
(benchmark, metric) => {
let scrollY = window.scrollY;
const observer = new MutationObserver(() => {
window.scrollTo(0, scrollY);
observer.disconnect();
});
observer.observe(document.getElementById('full-width-plot'), { childList: true });
return [benchmark, metric];
}
""",
)
app.launch(
allowed_paths=[
"logo.png",
"hpai_logo_grad.png",
"bsc-logo.png",
]
)
|