Spaces:
Runtime error
Runtime error
File size: 6,937 Bytes
c97ace5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import cv2
import numpy as np
import utlis
########################################################################
webCamFeed = True
pathImage = "5.jpg"
cap = cv2.VideoCapture(1)
cap.set(10,160)
heightImg = 700
widthImg = 700
questions=5
choices=5
ans= [1,2,0,2,4]
########################################################################
count=0
while True:
if webCamFeed:success, img = cap.read()
else:img = cv2.imread(pathImage)
img = cv2.resize(img, (widthImg, heightImg)) # RESIZE IMAGE
imgFinal = img.copy()
imgBlank = np.zeros((heightImg,widthImg, 3), np.uint8) # CREATE A BLANK IMAGE FOR TESTING DEBUGGING IF REQUIRED
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # CONVERT IMAGE TO GRAY SCALE
imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1) # ADD GAUSSIAN BLUR
imgCanny = cv2.Canny(imgBlur,10,70) # APPLY CANNY
try:
## FIND ALL COUNTOURS
imgContours = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES
imgBigContour = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES
contours, hierarchy = cv2.findContours(imgCanny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # FIND ALL CONTOURS
cv2.drawContours(imgContours, contours, -1, (0, 255, 0), 10) # DRAW ALL DETECTED CONTOURS
rectCon = utlis.rectContour(contours) # FILTER FOR RECTANGLE CONTOURS
biggestPoints= utlis.getCornerPoints(rectCon[0]) # GET CORNER POINTS OF THE BIGGEST RECTANGLE
gradePoints = utlis.getCornerPoints(rectCon[1]) # GET CORNER POINTS OF THE SECOND BIGGEST RECTANGLE
if biggestPoints.size != 0 and gradePoints.size != 0:
# BIGGEST RECTANGLE WARPING
biggestPoints=utlis.reorder(biggestPoints) # REORDER FOR WARPING
cv2.drawContours(imgBigContour, biggestPoints, -1, (0, 255, 0), 20) # DRAW THE BIGGEST CONTOUR
pts1 = np.float32(biggestPoints) # PREPARE POINTS FOR WARP
pts2 = np.float32([[0, 0],[widthImg, 0], [0, heightImg],[widthImg, heightImg]]) # PREPARE POINTS FOR WARP
matrix = cv2.getPerspectiveTransform(pts1, pts2) # GET TRANSFORMATION MATRIX
imgWarpColored = cv2.warpPerspective(img, matrix, (widthImg, heightImg)) # APPLY WARP PERSPECTIVE
# SECOND BIGGEST RECTANGLE WARPING
cv2.drawContours(imgBigContour, gradePoints, -1, (255, 0, 0), 20) # DRAW THE BIGGEST CONTOUR
gradePoints = utlis.reorder(gradePoints) # REORDER FOR WARPING
ptsG1 = np.float32(gradePoints) # PREPARE POINTS FOR WARP
ptsG2 = np.float32([[0, 0], [325, 0], [0, 150], [325, 150]]) # PREPARE POINTS FOR WARP
matrixG = cv2.getPerspectiveTransform(ptsG1, ptsG2)# GET TRANSFORMATION MATRIX
imgGradeDisplay = cv2.warpPerspective(img, matrixG, (325, 150)) # APPLY WARP PERSPECTIVE
# APPLY THRESHOLD
imgWarpGray = cv2.cvtColor(imgWarpColored,cv2.COLOR_BGR2GRAY) # CONVERT TO GRAYSCALE
imgThresh = cv2.threshold(imgWarpGray, 170, 255,cv2.THRESH_BINARY_INV )[1] # APPLY THRESHOLD AND INVERSE
boxes = utlis.splitBoxes(imgThresh) # GET INDIVIDUAL BOXES
cv2.imshow("Split Test ", boxes[3])
countR=0
countC=0
myPixelVal = np.zeros((questions,choices)) # TO STORE THE NON ZERO VALUES OF EACH BOX
for image in boxes:
#cv2.imshow(str(countR)+str(countC),image)
totalPixels = cv2.countNonZero(image)
myPixelVal[countR][countC]= totalPixels
countC += 1
if (countC==choices):countC=0;countR +=1
# FIND THE USER ANSWERS AND PUT THEM IN A LIST
myIndex=[]
for x in range (0,questions):
arr = myPixelVal[x]
myIndexVal = np.where(arr == np.amax(arr))
myIndex.append(myIndexVal[0][0])
#print("USER ANSWERS",myIndex)
# COMPARE THE VALUES TO FIND THE CORRECT ANSWERS
grading=[]
for x in range(0,questions):
if ans[x] == myIndex[x]:
grading.append(1)
else:grading.append(0)
#print("GRADING",grading)
score = (sum(grading)/questions)*100 # FINAL GRADE
#print("SCORE",score)
# DISPLAYING ANSWERS
utlis.showAnswers(imgWarpColored,myIndex,grading,ans) # DRAW DETECTED ANSWERS
utlis.drawGrid(imgWarpColored) # DRAW GRID
imgRawDrawings = np.zeros_like(imgWarpColored) # NEW BLANK IMAGE WITH WARP IMAGE SIZE
utlis.showAnswers(imgRawDrawings, myIndex, grading, ans) # DRAW ON NEW IMAGE
invMatrix = cv2.getPerspectiveTransform(pts2, pts1) # INVERSE TRANSFORMATION MATRIX
imgInvWarp = cv2.warpPerspective(imgRawDrawings, invMatrix, (widthImg, heightImg)) # INV IMAGE WARP
# DISPLAY GRADE
imgRawGrade = np.zeros_like(imgGradeDisplay,np.uint8) # NEW BLANK IMAGE WITH GRADE AREA SIZE
cv2.putText(imgRawGrade,str(int(score))+"%",(70,100)
,cv2.FONT_HERSHEY_COMPLEX,3,(0,255,255),3) # ADD THE GRADE TO NEW IMAGE
invMatrixG = cv2.getPerspectiveTransform(ptsG2, ptsG1) # INVERSE TRANSFORMATION MATRIX
imgInvGradeDisplay = cv2.warpPerspective(imgRawGrade, invMatrixG, (widthImg, heightImg)) # INV IMAGE WARP
# SHOW ANSWERS AND GRADE ON FINAL IMAGE
imgFinal = cv2.addWeighted(imgFinal, 1, imgInvWarp, 1,0)
imgFinal = cv2.addWeighted(imgFinal, 1, imgInvGradeDisplay, 1,0)
# IMAGE ARRAY FOR DISPLAY
imageArray = ([img,imgGray,imgCanny,imgContours],
[imgBigContour,imgThresh,imgWarpColored,imgFinal])
cv2.imshow("Final Result", imgFinal)
except:
imageArray = ([img,imgGray,imgCanny,imgContours],
[imgBlank, imgBlank, imgBlank, imgBlank])
# LABELS FOR DISPLAY
lables = [["Original","Gray","Edges","Contours"],
["Biggest Contour","Threshold","Warpped","Final"]]
stackedImage = utlis.stackImages(imageArray,0.5,lables)
cv2.imshow("Result",stackedImage)
# SAVE IMAGE WHEN 's' key is pressed
if cv2.waitKey(1) & 0xFF == ord('s'):
cv2.imwrite("Scanned/myImage"+str(count)+".jpg",imgFinal)
cv2.rectangle(stackedImage, ((int(stackedImage.shape[1] / 2) - 230), int(stackedImage.shape[0] / 2) + 50),
(1100, 350), (0, 255, 0), cv2.FILLED)
cv2.putText(stackedImage, "Scan Saved", (int(stackedImage.shape[1] / 2) - 200, int(stackedImage.shape[0] / 2)),
cv2.FONT_HERSHEY_DUPLEX, 3, (0, 0, 255), 5, cv2.LINE_AA)
cv2.imshow('Result', stackedImage)
cv2.waitKey(300)
count += 1 |