import cv2 import numpy as np ## TO STACK ALL THE IMAGES IN ONE WINDOW def stackImages(imgArray,scale,lables=[]): rows = len(imgArray) cols = len(imgArray[0]) rowsAvailable = isinstance(imgArray[0], list) width = imgArray[0][0].shape[1] height = imgArray[0][0].shape[0] if rowsAvailable: for x in range ( 0, rows): for y in range(0, cols): imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale) if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR) imageBlank = np.zeros((height, width, 3), np.uint8) hor = [imageBlank]*rows hor_con = [imageBlank]*rows for x in range(0, rows): hor[x] = np.hstack(imgArray[x]) hor_con[x] = np.concatenate(imgArray[x]) ver = np.vstack(hor) ver_con = np.concatenate(hor) else: for x in range(0, rows): imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale) if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR) hor= np.hstack(imgArray) hor_con= np.concatenate(imgArray) ver = hor if len(lables) != 0: eachImgWidth= int(ver.shape[1] / cols) eachImgHeight = int(ver.shape[0] / rows) #print(eachImgHeight) for d in range(0, rows): for c in range (0,cols): cv2.rectangle(ver,(c*eachImgWidth,eachImgHeight*d),(c*eachImgWidth+len(lables[d][c])*13+27,30+eachImgHeight*d),(255,255,255),cv2.FILLED) cv2.putText(ver,lables[d][c],(eachImgWidth*c+10,eachImgHeight*d+20),cv2.FONT_HERSHEY_COMPLEX,0.7,(255,0,255),2) return ver def reorder(myPoints): myPoints = myPoints.reshape((4, 2)) # REMOVE EXTRA BRACKET print(myPoints) myPointsNew = np.zeros((4, 1, 2), np.int32) # NEW MATRIX WITH ARRANGED POINTS add = myPoints.sum(1) print(add) print(np.argmax(add)) myPointsNew[0] = myPoints[np.argmin(add)] #[0,0] myPointsNew[3] =myPoints[np.argmax(add)] #[w,h] diff = np.diff(myPoints, axis=1) myPointsNew[1] =myPoints[np.argmin(diff)] #[w,0] myPointsNew[2] = myPoints[np.argmax(diff)] #[h,0] return myPointsNew def rectContour(contours): rectCon = [] max_area = 0 for i in contours: area = cv2.contourArea(i) if area > 50: peri = cv2.arcLength(i, True) approx = cv2.approxPolyDP(i, 0.02 * peri, True) if len(approx) == 4: rectCon.append(i) rectCon = sorted(rectCon, key=cv2.contourArea,reverse=True) #print(len(rectCon)) return rectCon def getCornerPoints(cont): peri = cv2.arcLength(cont, True) # LENGTH OF CONTOUR approx = cv2.approxPolyDP(cont, 0.02 * peri, True) # APPROXIMATE THE POLY TO GET CORNER POINTS return approx def splitBoxes(img): rows = np.vsplit(img,5) boxes=[] for r in rows: cols= np.hsplit(r,5) for box in cols: boxes.append(box) return boxes def drawGrid(img,questions=5,choices=5): secW = int(img.shape[1]/questions) secH = int(img.shape[0]/choices) for i in range (0,9): pt1 = (0,secH*i) pt2 = (img.shape[1],secH*i) pt3 = (secW * i, 0) pt4 = (secW*i,img.shape[0]) cv2.line(img, pt1, pt2, (255, 255, 0),2) cv2.line(img, pt3, pt4, (255, 255, 0),2) return img def showAnswers(img,myIndex,grading,ans,questions=5,choices=5): secW = int(img.shape[1]/questions) secH = int(img.shape[0]/choices) for x in range(0,questions): myAns= myIndex[x] cX = (myAns * secW) + secW // 2 cY = (x * secH) + secH // 2 if grading[x]==1: myColor = (0,255,0) #cv2.rectangle(img,(myAns*secW,x*secH),((myAns*secW)+secW,(x*secH)+secH),myColor,cv2.FILLED) cv2.circle(img,(cX,cY),50,myColor,cv2.FILLED) else: myColor = (0,0,255) #cv2.rectangle(img, (myAns * secW, x * secH), ((myAns * secW) + secW, (x * secH) + secH), myColor, cv2.FILLED) cv2.circle(img, (cX, cY), 50, myColor, cv2.FILLED) # CORRECT ANSWER myColor = (0, 255, 0) correctAns = ans[x] cv2.circle(img,((correctAns * secW)+secW//2, (x * secH)+secH//2), 20,myColor,cv2.FILLED)