Spaces:
Running
Running
import streamlit as st | |
import requests | |
import pandas as pd | |
import tempfile | |
import os | |
import plotly.express as px | |
from datetime import datetime | |
import uuid | |
# Simulated in-memory storage for churn log | |
if "churn_log" not in st.session_state: | |
st.session_state.churn_log = [] | |
st.set_page_config(page_title="ChurnSight AI", page_icon="π§ ", layout="wide") | |
if os.path.exists("logo.png"): | |
st.image("logo.png", width=180) | |
# Session state setup | |
defaults = { | |
"review": "", | |
"dark_mode": False, | |
"intelligence_mode": True, | |
"trigger_example_analysis": False, | |
"last_response": None, | |
"followup_answer": None, | |
"use_aspects": False, | |
"use_explain_bulk": False | |
} | |
for k, v in defaults.items(): | |
if k not in st.session_state: | |
st.session_state[k] = v | |
# Dark mode styling | |
if st.session_state.dark_mode: | |
st.markdown(""" | |
<style> | |
html, body, [class*="st-"] { | |
background-color: #121212; | |
color: #f5f5f5; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Sidebar config | |
with st.sidebar: | |
st.header("βοΈ PM Config") | |
st.session_state.dark_mode = st.toggle("π Dark Mode", value=st.session_state.dark_mode) | |
st.session_state.intelligence_mode = st.toggle("π§ Intelligence Mode", value=st.session_state.intelligence_mode) | |
api_token = st.text_input("π API Token", value="my-secret-key", type="password") | |
if api_token.strip() == "my-secret-key": | |
st.warning("π§ͺ Demo Mode β Not all features are active. Add your API token to unlock full features.") | |
backend_url = st.text_input("π Backend URL", value="http://localhost:8000") | |
sentiment_model = st.selectbox("π Sentiment Model", ["Auto-detect", "distilbert-base-uncased-finetuned-sst-2-english"]) | |
industry = st.selectbox("π Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"]) | |
product_category = st.selectbox("π§© Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"]) | |
st.session_state.use_aspects = st.checkbox("π Detect Pain Points", value=st.session_state.get("use_aspects", False)) | |
st.session_state.use_explain_bulk = st.checkbox("π§ Generate PM Insight (Bulk)", value=st.session_state.get("use_explain_bulk", False)) | |
verbosity = st.radio("π£οΈ Response Style", ["Brief", "Detailed"]) | |
tab1, tab2 = st.tabs(["π§ Analyze Review", "π Bulk Reviews"]) | |
# === SINGLE REVIEW ANALYSIS === | |
with tab1: | |
st.title("π ChurnSight AI β Product Feedback Assistant") | |
st.markdown("Analyze feedback to detect churn risk, extract pain points, and support product decisions.") | |
review = st.text_area("π Enter Customer Feedback", value=st.session_state.review, height=180) | |
if review and (len(review.split()) < 20 or len(review.split()) > 50): | |
st.warning("β οΈ For best results, keep the review between 20 to 50 words.") | |
st.session_state.review = review | |
analyze = False | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
analyze = st.button("π Analyze", disabled=not (20 <= len(review.split()) <= 50)) | |
with col2: | |
if st.button("π² Example"): | |
st.session_state.review = ( | |
"The app crashes every time I try to checkout. It's so slow and unresponsive. " | |
"Customer support never replied. I'm switching to another brand." | |
) | |
st.session_state.trigger_example_analysis = True | |
st.rerun() | |
with col3: | |
if st.button("π§Ή Clear"): | |
for key in ["review", "last_response", "followup_answer"]: | |
st.session_state[key] = "" | |
st.rerun() | |
if st.session_state.review and (analyze or st.session_state.get("trigger_example_analysis")): | |
with st.spinner("Analyzing feedback..."): | |
try: | |
model_used = None if sentiment_model == "Auto-detect" else sentiment_model | |
payload = { | |
"text": st.session_state.review, | |
"model": model_used or "distilbert-base-uncased-finetuned-sst-2-english", | |
"industry": industry, | |
"product_category": product_category, | |
"verbosity": verbosity, | |
"aspects": st.session_state.use_aspects, | |
"intelligence": st.session_state.get("intelligence_mode", False) | |
} | |
headers = {"x-api-key": st.session_state.get("api_token", "my-secret-key")} | |
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers) | |
if res.ok: | |
st.session_state.last_response = res.json() | |
else: | |
try: | |
err_detail = res.json().get("detail", "No detail provided.") | |
except Exception: | |
err_detail = res.text | |
st.error(f"β Backend Error ({res.status_code}): {err_detail}") | |
except Exception as e: | |
st.error(f"π« Exception: {e}") | |
data = st.session_state.last_response | |
if data: | |
st.subheader("π PM Insight Summary") | |
st.info(data["summary"]) | |
st.markdown(f"**Industry:** `{data['industry']}` | **Category:** `{data['product_category']}` | **Device:** Web") | |
st.metric("π Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}") | |
st.progress(data["sentiment"]["score"]) | |
st.info(f"π’ Emotion: {data['emotion']}") | |
if "churn_risk" in data: | |
risk = data["churn_risk"] | |
color = "π΄" if risk == "High Risk" else "π’" | |
st.metric("π¨ Churn Risk", f"{color} {risk}") | |
if st.session_state.use_aspects: | |
if data.get("pain_points"): | |
st.error("π Pain Points: " + ", ".join(data["pain_points"])) | |
else: | |
st.info("β No specific pain points were detected.") | |
try: | |
st.session_state.churn_log.append({ | |
"timestamp": datetime.now(), | |
"product": data.get("product_category", "General"), | |
"churn_risk": data.get("churn_risk", "Unknown"), | |
"session_id": str(uuid.uuid4()) | |
}) | |
if len(st.session_state.churn_log) > 1000: | |
st.session_state.churn_log = st.session_state.churn_log[-1000:] | |
except Exception as e: | |
st.warning(f"π§ͺ Logging failed: {e}") | |
st.markdown("### π Ask a Follow-Up") | |
sentiment = data["sentiment"]["label"].lower() | |
churn = data.get("churn_risk", "") | |
pain = data.get("pain_points", []) | |
if sentiment == "positive" and churn == "Low Risk": | |
suggestions = [ | |
"What features impressed the user?", | |
"Would they recommend the product?", | |
"What benefits did they mention?", | |
"What made their experience smooth?" | |
] | |
elif churn == "High Risk": | |
suggestions = [ | |
"What made the user upset?", | |
"Is this user likely to churn?", | |
"What were the major complaints?", | |
"What could improve their experience?" | |
] | |
else: | |
suggestions = [ | |
"What are the key takeaways?", | |
"Is there any concern raised?", | |
"Did the user express dissatisfaction?", | |
"Is this feedback actionable?" | |
] | |
selected_q = st.selectbox("π‘ Suggested Questions", ["Type your own..."] + suggestions) | |
q_input = st.text_input("π Your Question") if selected_q == "Type your own..." else selected_q | |
if q_input: | |
try: | |
follow_payload = { | |
"text": st.session_state.review, | |
"question": q_input, | |
"verbosity": verbosity | |
} | |
headers = {"x-api-key": api_token} | |
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers) | |
if res.ok: | |
st.success(res.json().get("answer")) | |
else: | |
try: | |
err_detail = res.json().get("detail", "No detail provided.") | |
except Exception: | |
err_detail = res.text | |
st.error(f"β Follow-up API Error ({res.status_code}): {err_detail}") | |
except Exception as e: | |
st.error(f"β οΈ Follow-up error: {e}") | |
if st.checkbox("π Show Churn Risk Trends"): | |
try: | |
df = pd.DataFrame(st.session_state.churn_log) | |
df["date"] = pd.to_datetime(df["timestamp"]).dt.date | |
trend = df.groupby(["date", "churn_risk"]).size().unstack(fill_value=0).reset_index() | |
y_columns = [col for col in trend.columns if col != "date"] | |
st.markdown("#### π Daily Churn Trend") | |
fig = px.bar(trend, x="date", y=y_columns, barmode="group") | |
st.plotly_chart(fig, use_container_width=True) | |
st.download_button("β¬οΈ Export Trend CSV", trend.to_csv(index=False), "churn_trend.csv") | |
except Exception as e: | |
st.error(f"Trend error: {e}") | |
# === BULK REVIEW ANALYSIS === | |
with tab2: | |
st.title("π Bulk Feedback Analysis") | |
st.markdown("#### π₯ Upload CSV or Paste Reviews") | |
uploaded_file = st.file_uploader("Upload a CSV with a 'review' column", type=["csv"]) | |
bulk_input = st.text_area("Or paste multiple reviews (one per line)", height=180) | |
reviews = [] | |
if uploaded_file is not None: | |
try: | |
df_csv = pd.read_csv(uploaded_file) | |
if "review" in df_csv.columns: | |
reviews = df_csv["review"].dropna().astype(str).tolist() | |
else: | |
st.warning("CSV must contain a 'review' column.") | |
except Exception as e: | |
st.error(f"CSV error: {e}") | |
elif bulk_input.strip(): | |
reviews = [line.strip() for line in bulk_input.split("\\n") if line.strip()] | |
st.markdown("#### π§ Bulk Analysis Configuration") | |
explain_bulk = st.checkbox("π§ Generate Explanations", value=st.session_state.get("use_explain_bulk", False)) | |
enable_followups = st.checkbox("π¬ Generate Follow-Up Q&A", value=True) | |
if st.button("π Analyze Bulk") and reviews: | |
payload = { | |
"reviews": reviews, | |
"model": "distilbert-base-uncased-finetuned-sst-2-english" if sentiment_model == "Auto-detect" else sentiment_model, | |
"industry": None, | |
"product_category": None, | |
"device": None, | |
"aspects": st.session_state.use_aspects, | |
"intelligence": st.session_state.intelligence_mode, | |
"explain_bulk": explain_bulk, | |
"follow_up": [["What is the issue here?", "What could be improved?"]] * len(reviews) if enable_followups else None | |
} | |
try: | |
res = requests.post(f"{backend_url}/bulk/?token={api_token}", json=payload) | |
if res.ok: | |
results = res.json().get("results", []) | |
df = pd.DataFrame(results) | |
st.dataframe(df) | |
if any("follow_up" in r for r in results): | |
st.markdown("### π¬ Follow-Up Answers") | |
for r in results: | |
st.markdown(f"**Review:** {r['review']}") | |
if isinstance(r.get("follow_up"), list): | |
for ans in r["follow_up"]: | |
st.info(ans) | |
elif "follow_up" in r: | |
st.info(r["follow_up"]) | |
if "churn_risk" in df.columns: | |
st.markdown("### π Churn Risk Chart") | |
churn_summary = df["churn_risk"].value_counts().reset_index() | |
churn_summary.columns = ["Churn Risk", "Count"] | |
fig = px.pie(churn_summary, names="Churn Risk", values="Count", title="Churn Risk Distribution") | |
st.plotly_chart(fig, use_container_width=True) | |
st.download_button("β¬οΈ Export Results CSV", df.to_csv(index=False), "bulk_results.csv") | |
else: | |
try: | |
err_detail = res.json().get("detail", "No detail provided.") | |
except Exception: | |
err_detail = res.text | |
st.error(f"β Bulk API Error ({res.status_code}): {err_detail}") | |
except Exception as e: | |
st.error(f"Bulk analysis failed: {e}") | |
# === ROOT CAUSE & FIX (AI Product Triage) === | |
tab3 = st.container() | |
with tab3: | |
st.title("π οΈ Root Cause & Fix Suggestion") | |
st.markdown("Get AI-generated issue triage from user feedback.") | |
triage_input = st.text_area("π Paste a customer review or complaint here") | |
if st.button("π€ Analyze Root Cause"): | |
if len(triage_input.strip().split()) < 5: | |
st.warning("Please enter at least one complete issue or sentence.") | |
else: | |
with st.spinner("Analyzing..."): | |
try: | |
res = requests.post(f"{backend_url}/rootcause/", json={"text": triage_input}, headers={"x-api-key": api_token}) | |
if res.ok: | |
triage = res.json() | |
st.success("β Analysis complete") | |
st.markdown("### π§© Detected Problem") | |
st.info(triage.get("problem", "β")) | |
st.markdown("### π οΈ Inferred Root Cause") | |
st.warning(triage.get("cause", "β")) | |
st.markdown("### π‘ Suggested Fix or Team") | |
st.success(triage.get("suggestion", "β")) | |
else: | |
st.error(f"API Error: {res.status_code}") | |
except Exception as e: | |
st.error(f"Root cause analysis failed: {e}") |