churnsight-ai / frontend.py
Hasitha16's picture
Update frontend.py
3a342ac verified
import streamlit as st
import requests
import pandas as pd
import tempfile
import os
import plotly.express as px
from datetime import datetime
import uuid
# Simulated in-memory storage for churn log
if "churn_log" not in st.session_state:
st.session_state.churn_log = []
st.set_page_config(page_title="ChurnSight AI", page_icon="🧠", layout="wide")
if os.path.exists("logo.png"):
st.image("logo.png", width=180)
# Session state setup
defaults = {
"review": "",
"dark_mode": False,
"intelligence_mode": True,
"trigger_example_analysis": False,
"last_response": None,
"followup_answer": None,
"use_aspects": False,
"use_explain_bulk": False
}
for k, v in defaults.items():
if k not in st.session_state:
st.session_state[k] = v
# Dark mode styling
if st.session_state.dark_mode:
st.markdown("""
<style>
html, body, [class*="st-"] {
background-color: #121212;
color: #f5f5f5;
}
</style>
""", unsafe_allow_html=True)
# Sidebar config
with st.sidebar:
st.header("βš™οΈ PM Config")
st.session_state.dark_mode = st.toggle("πŸŒ™ Dark Mode", value=st.session_state.dark_mode)
st.session_state.intelligence_mode = st.toggle("🧠 Intelligence Mode", value=st.session_state.intelligence_mode)
api_token = st.text_input("πŸ” API Token", value="my-secret-key", type="password")
if api_token.strip() == "my-secret-key":
st.warning("πŸ§ͺ Demo Mode β€” Not all features are active. Add your API token to unlock full features.")
backend_url = st.text_input("🌐 Backend URL", value="http://localhost:8000")
sentiment_model = st.selectbox("πŸ“Š Sentiment Model", ["Auto-detect", "distilbert-base-uncased-finetuned-sst-2-english"])
industry = st.selectbox("🏭 Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"])
product_category = st.selectbox("🧩 Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"])
st.session_state.use_aspects = st.checkbox("πŸ” Detect Pain Points", value=st.session_state.get("use_aspects", False))
st.session_state.use_explain_bulk = st.checkbox("🧠 Generate PM Insight (Bulk)", value=st.session_state.get("use_explain_bulk", False))
verbosity = st.radio("πŸ—£οΈ Response Style", ["Brief", "Detailed"])
tab1, tab2 = st.tabs(["🧠 Analyze Review", "πŸ“š Bulk Reviews"])
# === SINGLE REVIEW ANALYSIS ===
with tab1:
st.title("πŸ“Š ChurnSight AI β€” Product Feedback Assistant")
st.markdown("Analyze feedback to detect churn risk, extract pain points, and support product decisions.")
review = st.text_area("πŸ“ Enter Customer Feedback", value=st.session_state.review, height=180)
if review and (len(review.split()) < 20 or len(review.split()) > 50):
st.warning("⚠️ For best results, keep the review between 20 to 50 words.")
st.session_state.review = review
analyze = False
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("πŸ” Analyze", disabled=not (20 <= len(review.split()) <= 50))
with col2:
if st.button("🎲 Example"):
st.session_state.review = (
"The app crashes every time I try to checkout. It's so slow and unresponsive. "
"Customer support never replied. I'm switching to another brand."
)
st.session_state.trigger_example_analysis = True
st.rerun()
with col3:
if st.button("🧹 Clear"):
for key in ["review", "last_response", "followup_answer"]:
st.session_state[key] = ""
st.rerun()
if st.session_state.review and (analyze or st.session_state.get("trigger_example_analysis")):
with st.spinner("Analyzing feedback..."):
try:
model_used = None if sentiment_model == "Auto-detect" else sentiment_model
payload = {
"text": st.session_state.review,
"model": model_used or "distilbert-base-uncased-finetuned-sst-2-english",
"industry": industry,
"product_category": product_category,
"verbosity": verbosity,
"aspects": st.session_state.use_aspects,
"intelligence": st.session_state.get("intelligence_mode", False)
}
headers = {"x-api-key": st.session_state.get("api_token", "my-secret-key")}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers)
if res.ok:
st.session_state.last_response = res.json()
else:
try:
err_detail = res.json().get("detail", "No detail provided.")
except Exception:
err_detail = res.text
st.error(f"❌ Backend Error ({res.status_code}): {err_detail}")
except Exception as e:
st.error(f"🚫 Exception: {e}")
data = st.session_state.last_response
if data:
st.subheader("πŸ“Œ PM Insight Summary")
st.info(data["summary"])
st.markdown(f"**Industry:** `{data['industry']}` | **Category:** `{data['product_category']}` | **Device:** Web")
st.metric("πŸ“Š Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.progress(data["sentiment"]["score"])
st.info(f"πŸ’’ Emotion: {data['emotion']}")
if "churn_risk" in data:
risk = data["churn_risk"]
color = "πŸ”΄" if risk == "High Risk" else "🟒"
st.metric("🚨 Churn Risk", f"{color} {risk}")
if st.session_state.use_aspects:
if data.get("pain_points"):
st.error("πŸ” Pain Points: " + ", ".join(data["pain_points"]))
else:
st.info("βœ… No specific pain points were detected.")
try:
st.session_state.churn_log.append({
"timestamp": datetime.now(),
"product": data.get("product_category", "General"),
"churn_risk": data.get("churn_risk", "Unknown"),
"session_id": str(uuid.uuid4())
})
if len(st.session_state.churn_log) > 1000:
st.session_state.churn_log = st.session_state.churn_log[-1000:]
except Exception as e:
st.warning(f"πŸ§ͺ Logging failed: {e}")
st.markdown("### πŸ” Ask a Follow-Up")
sentiment = data["sentiment"]["label"].lower()
churn = data.get("churn_risk", "")
pain = data.get("pain_points", [])
if sentiment == "positive" and churn == "Low Risk":
suggestions = [
"What features impressed the user?",
"Would they recommend the product?",
"What benefits did they mention?",
"What made their experience smooth?"
]
elif churn == "High Risk":
suggestions = [
"What made the user upset?",
"Is this user likely to churn?",
"What were the major complaints?",
"What could improve their experience?"
]
else:
suggestions = [
"What are the key takeaways?",
"Is there any concern raised?",
"Did the user express dissatisfaction?",
"Is this feedback actionable?"
]
selected_q = st.selectbox("πŸ’‘ Suggested Questions", ["Type your own..."] + suggestions)
q_input = st.text_input("πŸ” Your Question") if selected_q == "Type your own..." else selected_q
if q_input:
try:
follow_payload = {
"text": st.session_state.review,
"question": q_input,
"verbosity": verbosity
}
headers = {"x-api-key": api_token}
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers)
if res.ok:
st.success(res.json().get("answer"))
else:
try:
err_detail = res.json().get("detail", "No detail provided.")
except Exception:
err_detail = res.text
st.error(f"❌ Follow-up API Error ({res.status_code}): {err_detail}")
except Exception as e:
st.error(f"⚠️ Follow-up error: {e}")
if st.checkbox("πŸ“Š Show Churn Risk Trends"):
try:
df = pd.DataFrame(st.session_state.churn_log)
df["date"] = pd.to_datetime(df["timestamp"]).dt.date
trend = df.groupby(["date", "churn_risk"]).size().unstack(fill_value=0).reset_index()
y_columns = [col for col in trend.columns if col != "date"]
st.markdown("#### πŸ“… Daily Churn Trend")
fig = px.bar(trend, x="date", y=y_columns, barmode="group")
st.plotly_chart(fig, use_container_width=True)
st.download_button("⬇️ Export Trend CSV", trend.to_csv(index=False), "churn_trend.csv")
except Exception as e:
st.error(f"Trend error: {e}")
# === BULK REVIEW ANALYSIS ===
with tab2:
st.title("πŸ“š Bulk Feedback Analysis")
st.markdown("#### πŸ“₯ Upload CSV or Paste Reviews")
uploaded_file = st.file_uploader("Upload a CSV with a 'review' column", type=["csv"])
bulk_input = st.text_area("Or paste multiple reviews (one per line)", height=180)
reviews = []
if uploaded_file is not None:
try:
df_csv = pd.read_csv(uploaded_file)
if "review" in df_csv.columns:
reviews = df_csv["review"].dropna().astype(str).tolist()
else:
st.warning("CSV must contain a 'review' column.")
except Exception as e:
st.error(f"CSV error: {e}")
elif bulk_input.strip():
reviews = [line.strip() for line in bulk_input.split("\\n") if line.strip()]
st.markdown("#### 🧠 Bulk Analysis Configuration")
explain_bulk = st.checkbox("🧠 Generate Explanations", value=st.session_state.get("use_explain_bulk", False))
enable_followups = st.checkbox("πŸ’¬ Generate Follow-Up Q&A", value=True)
if st.button("πŸš€ Analyze Bulk") and reviews:
payload = {
"reviews": reviews,
"model": "distilbert-base-uncased-finetuned-sst-2-english" if sentiment_model == "Auto-detect" else sentiment_model,
"industry": None,
"product_category": None,
"device": None,
"aspects": st.session_state.use_aspects,
"intelligence": st.session_state.intelligence_mode,
"explain_bulk": explain_bulk,
"follow_up": [["What is the issue here?", "What could be improved?"]] * len(reviews) if enable_followups else None
}
try:
res = requests.post(f"{backend_url}/bulk/?token={api_token}", json=payload)
if res.ok:
results = res.json().get("results", [])
df = pd.DataFrame(results)
st.dataframe(df)
if any("follow_up" in r for r in results):
st.markdown("### πŸ’¬ Follow-Up Answers")
for r in results:
st.markdown(f"**Review:** {r['review']}")
if isinstance(r.get("follow_up"), list):
for ans in r["follow_up"]:
st.info(ans)
elif "follow_up" in r:
st.info(r["follow_up"])
if "churn_risk" in df.columns:
st.markdown("### πŸ“ˆ Churn Risk Chart")
churn_summary = df["churn_risk"].value_counts().reset_index()
churn_summary.columns = ["Churn Risk", "Count"]
fig = px.pie(churn_summary, names="Churn Risk", values="Count", title="Churn Risk Distribution")
st.plotly_chart(fig, use_container_width=True)
st.download_button("⬇️ Export Results CSV", df.to_csv(index=False), "bulk_results.csv")
else:
try:
err_detail = res.json().get("detail", "No detail provided.")
except Exception:
err_detail = res.text
st.error(f"❌ Bulk API Error ({res.status_code}): {err_detail}")
except Exception as e:
st.error(f"Bulk analysis failed: {e}")
# === ROOT CAUSE & FIX (AI Product Triage) ===
tab3 = st.container()
with tab3:
st.title("πŸ› οΈ Root Cause & Fix Suggestion")
st.markdown("Get AI-generated issue triage from user feedback.")
triage_input = st.text_area("πŸ“ Paste a customer review or complaint here")
if st.button("πŸ€– Analyze Root Cause"):
if len(triage_input.strip().split()) < 5:
st.warning("Please enter at least one complete issue or sentence.")
else:
with st.spinner("Analyzing..."):
try:
res = requests.post(f"{backend_url}/rootcause/", json={"text": triage_input}, headers={"x-api-key": api_token})
if res.ok:
triage = res.json()
st.success("βœ… Analysis complete")
st.markdown("### 🧩 Detected Problem")
st.info(triage.get("problem", "β€”"))
st.markdown("### πŸ› οΈ Inferred Root Cause")
st.warning(triage.get("cause", "β€”"))
st.markdown("### πŸ’‘ Suggested Fix or Team")
st.success(triage.get("suggestion", "β€”"))
else:
st.error(f"API Error: {res.status_code}")
except Exception as e:
st.error(f"Root cause analysis failed: {e}")