Spaces:
Sleeping
Sleeping
File size: 13,485 Bytes
19aaa42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
#!/usr/bin/env python3
"""
Maternal Health RAG Chatbot - Gradio Interface
Complete chatbot interface for Sri Lankan maternal health guidelines
"""
import gradio as gr
import json
import time
from typing import List, Tuple, Dict, Any
from datetime import datetime
from pathlib import Path
from maternal_health_rag import MaternalHealthRAG, QueryResponse
class MaternalHealthChatbot:
"""Maternal Health Chatbot with Gradio interface"""
def __init__(self):
self.rag_system = None
self.chat_history = []
self.session_stats = {
'queries_processed': 0,
'total_response_time': 0.0,
'session_start': datetime.now()
}
# Initialize RAG system
self.initialize_chatbot()
def initialize_chatbot(self):
"""Initialize the RAG system for the chatbot"""
try:
print("π Initializing Maternal Health RAG Chatbot...")
self.rag_system = MaternalHealthRAG(use_mock_llm=True)
print("β
Chatbot initialized successfully!")
except Exception as e:
print(f"β Failed to initialize chatbot: {e}")
raise
def process_query(self, message: str, history: List[List[str]]) -> Tuple[str, List[List[str]]]:
"""Process user query and return response with updated history"""
if not message.strip():
return "", history
try:
# Process query through RAG system
response = self.rag_system.query(message)
# Update session statistics
self.session_stats['queries_processed'] += 1
self.session_stats['total_response_time'] += response.response_time
# Format response with metadata
formatted_response = self.format_response(response)
# Update chat history
history.append([message, formatted_response])
return "", history
except Exception as e:
error_response = f"I apologize, but I encountered an error: {str(e)}. Please try rephrasing your question."
history.append([message, error_response])
return "", history
def format_response(self, response: QueryResponse) -> str:
"""Format the RAG response for display"""
# Main answer
formatted_answer = f"**π₯ Clinical Response:**\n{response.answer}\n\n"
# Confidence and metadata
confidence_emoji = "π’" if response.confidence >= 0.7 else "π‘" if response.confidence >= 0.4 else "π΄"
formatted_answer += f"**π Response Metadata:**\n"
formatted_answer += f"{confidence_emoji} Confidence: {response.confidence:.1%}\n"
formatted_answer += f"β±οΈ Response Time: {response.response_time:.2f}s\n"
formatted_answer += f"π Sources: {response.metadata['num_sources']} guidelines\n"
if response.metadata['content_types']:
content_types = ", ".join(response.metadata['content_types'])
formatted_answer += f"π Content Types: {content_types}\n"
# Source details (for high-confidence responses)
if response.confidence >= 0.6 and response.sources:
formatted_answer += f"\n**π Key Sources:**\n"
for i, source in enumerate(response.sources[:3], 1): # Show top 3 sources
source_preview = source.content[:150] + "..." if len(source.content) > 150 else source.content
formatted_answer += f"{i}. **{source.chunk_type.title()}** (Score: {source.score:.2f})\n"
formatted_answer += f" {source_preview}\n\n"
# Safety disclaimer
formatted_answer += "\n---\n"
formatted_answer += "β οΈ **Medical Disclaimer:** This information is based on Sri Lankan maternal health guidelines and is for educational purposes only. Always consult with qualified healthcare professionals for medical decisions."
return formatted_answer
def get_example_queries(self) -> List[str]:
"""Get example queries for the interface"""
return [
"What is the recommended dosage of magnesium sulfate for preeclampsia?",
"How should postpartum hemorrhage be managed in emergency situations?",
"What are the signs and symptoms of puerperal sepsis?",
"What is the normal fetal heart rate range during labor?",
"When is cesarean section indicated during delivery?",
"How to manage gestational diabetes during pregnancy?",
"What are the contraindications for vaginal delivery?",
"How to recognize and manage eclampsia?",
"What is the proper management of prolonged labor?",
"How to handle breech presentation during delivery?"
]
def clear_chat(self) -> List[List[str]]:
"""Clear chat history"""
self.chat_history = []
return []
def get_system_info(self) -> str:
"""Get system information and statistics"""
if not self.rag_system:
return "β RAG system not initialized"
stats = self.rag_system.get_system_stats()
session_time = (datetime.now() - self.session_stats['session_start']).total_seconds()
avg_response_time = (
self.session_stats['total_response_time'] / self.session_stats['queries_processed']
if self.session_stats['queries_processed'] > 0 else 0
)
info = f"""
## π₯ Maternal Health RAG Assistant - System Information
### π Knowledge Base Statistics
- **Total Medical Chunks:** {stats['vector_store']['total_chunks']:,}
- **Embedding Model:** {stats['vector_store']['embedding_model']}
- **Vector Store Size:** {stats['vector_store']['vector_store_size_mb']:.1f} MB
- **Clinical Content Types:** {len(stats['vector_store']['chunk_type_distribution'])}
### π§ RAG Configuration
- **Default Results:** {stats['rag_config']['default_k']} sources per query
- **Context Length:** {stats['rag_config']['max_context_length']:,} characters max
- **LLM Type:** {stats['rag_config']['llm_type'].title()}
### π Session Statistics
- **Queries Processed:** {self.session_stats['queries_processed']}
- **Average Response Time:** {avg_response_time:.2f}s
- **Session Duration:** {session_time:.0f}s
- **System Status:** {stats['status'].title()}
### π Document Coverage
This assistant covers **15 Sri Lankan maternal health guidelines** including:
- National Guidelines for Maternal Care
- SLJOG Clinical Guidelines
- Emergency Management Protocols
- Dosage and Treatment Guidelines
- Postnatal Care Guidelines
"""
return info
def create_chatbot_interface():
"""Create the Gradio chatbot interface"""
# Initialize chatbot
chatbot = MaternalHealthChatbot()
# Create Gradio interface
with gr.Blocks(
title="Maternal Health Assistant",
theme=gr.themes.Soft(),
css="""
.gradio-container {
font-family: 'Arial', sans-serif;
}
.chat-message {
font-size: 16px;
line-height: 1.5;
}
"""
) as demo:
# Header
gr.Markdown("""
# π₯ Sri Lankan Maternal Health RAG Assistant
**Your AI assistant for Sri Lankan maternal health guidelines**
Ask questions about:
- π Medication dosages and protocols
- π¨ Emergency management procedures
- π€± Maternal and fetal care guidelines
- π Clinical decision-making support
- π¬ Diagnostic criteria and procedures
*Based on official Sri Lankan maternal health guidelines and SLJOG recommendations*
""")
with gr.Tab("π¬ Chat Assistant"):
# Chat interface
chatbot_interface = gr.Chatbot(
label="Maternal Health Assistant",
height=500,
elem_classes=["chat-message"]
)
msg = gr.Textbox(
label="Your Question",
placeholder="Ask me about maternal health guidelines, emergency protocols, dosages, or clinical procedures...",
lines=2
)
with gr.Row():
submit_btn = gr.Button("π Ask Question", variant="primary")
clear_btn = gr.Button("ποΈ Clear Chat", variant="secondary")
# Example queries
gr.Markdown("### π‘ Example Questions:")
with gr.Row():
examples = chatbot.get_example_queries()
for i in range(0, len(examples), 2):
with gr.Column():
if i < len(examples):
gr.Button(
examples[i],
variant="outline",
size="sm"
).click(
lambda x=examples[i]: x,
outputs=msg
)
if i+1 < len(examples):
gr.Button(
examples[i+1],
variant="outline",
size="sm"
).click(
lambda x=examples[i+1]: x,
outputs=msg
)
with gr.Tab("π System Information"):
system_info = gr.Markdown(
chatbot.get_system_info(),
label="System Information"
)
refresh_btn = gr.Button("π Refresh Stats", variant="secondary")
refresh_btn.click(
chatbot.get_system_info,
outputs=system_info
)
with gr.Tab("βΉοΈ About"):
gr.Markdown("""
## About This Assistant
This **Maternal Health RAG Assistant** provides information based on official Sri Lankan maternal health guidelines using Retrieval-Augmented Generation (RAG) technology.
### π§ Technical Features
- **Vector-based search** through 542 medical content chunks
- **Semantic similarity** using all-MiniLM-L6-v2 embeddings
- **Clinical importance scoring** for prioritizing critical information
- **Medical context filtering** by content type (dosage, emergency, procedure, etc.)
- **Sub-second response times** with confidence scoring
### π Knowledge Base
- **15 comprehensive documents** covering maternal health
- **479 pages** of clinical guidelines processed
- **48 clinical tables** with dosage and protocol information
- **107,010 words** of medical content indexed
### β οΈ Important Disclaimers
1. **For Educational Use Only:** This tool provides information based on guidelines but should not replace professional medical judgment
2. **Always Consult Healthcare Professionals:** Medical decisions should always involve qualified healthcare providers
3. **Regular Updates:** Guidelines may change - always verify with the latest official sources
4. **Emergency Situations:** In medical emergencies, contact emergency services immediately
### ποΈ Built With
- **LangChain** for RAG pipeline orchestration
- **FAISS** for efficient vector similarity search
- **Sentence Transformers** for medical text embeddings
- **Gradio** for the user interface
- **pdfplumber** for medical document processing
---
*Developed for educational and clinical reference purposes*
""")
# Event handlers
submit_btn.click(
chatbot.process_query,
inputs=[msg, chatbot_interface],
outputs=[msg, chatbot_interface]
)
msg.submit(
chatbot.process_query,
inputs=[msg, chatbot_interface],
outputs=[msg, chatbot_interface]
)
clear_btn.click(
chatbot.clear_chat,
outputs=chatbot_interface
)
return demo
def main():
"""Main function to launch the chatbot"""
print("π Launching Maternal Health RAG Chatbot...")
try:
# Create and launch interface
demo = create_chatbot_interface()
print("β
Chatbot interface created successfully!")
print("π Launching on http://localhost:7860")
print("π± Access from other devices using the public link")
# Launch with public sharing for easier access
demo.launch(
server_name="0.0.0.0", # Allow external access
server_port=7860,
share=True, # Create public link
show_error=True,
quiet=False
)
except Exception as e:
print(f"β Failed to launch chatbot: {e}")
raise
if __name__ == "__main__":
main() |