Spaces:
Sleeping
Sleeping
File size: 9,967 Bytes
19aaa42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
#!/usr/bin/env python3
"""
Test Suite for Maternal Health Vector Store
Validates search functionality, medical context filtering, and performance
"""
import unittest
import time
from pathlib import Path
from vector_store_manager import MaternalHealthVectorStore, SearchResult
class TestMaternalHealthVectorStore(unittest.TestCase):
"""Test suite for vector store functionality"""
@classmethod
def setUpClass(cls):
"""Set up test environment"""
cls.vector_store = MaternalHealthVectorStore()
# Load existing vector store (should exist from previous run)
if cls.vector_store.index_file.exists():
print("Loading existing vector store for testing...")
success = cls.vector_store.load_existing_index()
if not success:
print("Failed to load existing index, creating new one...")
cls.vector_store.create_vector_index()
else:
print("Creating vector store for testing...")
cls.vector_store.create_vector_index()
def test_vector_store_initialization(self):
"""Test vector store loads correctly"""
self.assertIsNotNone(self.vector_store.index)
self.assertGreater(self.vector_store.index.ntotal, 0)
self.assertEqual(len(self.vector_store.documents), len(self.vector_store.metadata))
def test_basic_search_functionality(self):
"""Test basic search returns relevant results"""
query = "magnesium sulfate dosage for preeclampsia"
results = self.vector_store.search(query, k=3)
# Should return results
self.assertGreater(len(results), 0)
self.assertLessEqual(len(results), 3)
# All results should be SearchResult objects
for result in results:
self.assertIsInstance(result, SearchResult)
self.assertGreater(result.score, 0)
self.assertIn('magnesium', result.content.lower())
def test_medical_context_filtering(self):
"""Test filtering by medical content types"""
query = "emergency management protocols"
# Test filtering by emergency content
emergency_results = self.vector_store.search_by_medical_context(
query,
content_types=['emergency'],
min_importance=0.8,
k=5
)
# Should return emergency-specific results
for result in emergency_results:
self.assertEqual(result.chunk_type, 'emergency')
self.assertGreaterEqual(result.clinical_importance, 0.8)
def test_clinical_importance_filtering(self):
"""Test filtering by clinical importance"""
query = "dosage recommendations"
# Test high importance filtering
high_importance_results = self.vector_store.search_by_medical_context(
query,
min_importance=0.9,
k=10
)
# All results should have high clinical importance
for result in high_importance_results:
self.assertGreaterEqual(result.clinical_importance, 0.9)
def test_search_performance(self):
"""Test search performance is acceptable"""
query = "normal labor management guidelines"
start_time = time.time()
results = self.vector_store.search(query, k=5)
search_time = time.time() - start_time
# Search should be fast (under 1 second)
self.assertLess(search_time, 1.0)
self.assertGreater(len(results), 0)
def test_maternal_health_queries(self):
"""Test specific maternal health queries return relevant results"""
test_cases = [
{
'query': 'postpartum hemorrhage management',
'expected_keywords': ['hemorrhage', 'postpartum', 'bleeding'],
'min_score': 0.3
},
{
'query': 'fetal heart rate monitoring',
'expected_keywords': ['fetal', 'heart', 'rate', 'monitoring'],
'min_score': 0.3
},
{
'query': 'preeclampsia treatment protocols',
'expected_keywords': ['preeclampsia', 'treatment', 'protocol'],
'min_score': 0.3
}
]
for case in test_cases:
with self.subTest(query=case['query']):
results = self.vector_store.search(case['query'], k=3)
# Should return results
self.assertGreater(len(results), 0)
# Check relevance
best_result = results[0]
self.assertGreaterEqual(best_result.score, case['min_score'])
# Check if keywords appear in results
combined_content = ' '.join([r.content.lower() for r in results])
keyword_found = any(
keyword in combined_content
for keyword in case['expected_keywords']
)
self.assertTrue(keyword_found,
f"No keywords {case['expected_keywords']} found in results")
def test_statistics_functionality(self):
"""Test vector store statistics are accurate"""
stats = self.vector_store.get_statistics()
# Check required fields
required_fields = [
'total_chunks', 'embedding_dimension', 'embedding_model',
'chunk_type_distribution', 'clinical_importance_distribution'
]
for field in required_fields:
self.assertIn(field, stats)
# Check values make sense
self.assertGreater(stats['total_chunks'], 0)
self.assertEqual(stats['embedding_dimension'], 384)
self.assertIn('all-MiniLM-L6-v2', stats['embedding_model'])
def test_dosage_information_retrieval(self):
"""Test retrieval of dosage-specific information"""
dosage_queries = [
{
'query': "oxytocin dosage for labor induction",
'content_types': ['dosage', 'emergency', 'maternal', 'procedure'], # Include maternal and procedure
'dosage_terms': ['oxytocin', 'administration', 'dose', 'mg', 'ml', 'unit', 'continuous']
},
{
'query': "antibiotic prophylaxis dosing",
'content_types': ['dosage', 'emergency'],
'dosage_terms': ['mg', 'ml', 'dose', 'dosage', 'antibiotic', 'prophylaxis']
},
{
'query': "magnesium sulfate administration",
'content_types': ['dosage', 'emergency'],
'dosage_terms': ['magnesium', 'sulfate', 'mg', 'dose', 'administration']
}
]
for case in dosage_queries:
with self.subTest(query=case['query']):
results = self.vector_store.search_by_medical_context(
case['query'],
content_types=case['content_types'],
k=3
)
# Should find dosage-related content
self.assertGreater(len(results), 0)
# Check for dosage-related terms
combined_content = ' '.join([r.content.lower() for r in results])
term_found = any(term in combined_content for term in case['dosage_terms'])
self.assertTrue(term_found,
f"No dosage terms {case['dosage_terms']} found for query: {case['query']}")
def test_edge_cases(self):
"""Test edge cases and error handling"""
# Empty query
results = self.vector_store.search("", k=1)
self.assertIsInstance(results, list)
# Very specific query that might not match well
results = self.vector_store.search("xyz unknown medical term", k=1)
self.assertIsInstance(results, list)
# Large k value
results = self.vector_store.search("pregnancy", k=100)
self.assertLessEqual(len(results), 100)
def run_comprehensive_tests():
"""Run all tests and provide detailed report"""
print("🧪 Running Comprehensive Vector Store Tests...")
print("=" * 60)
# Create test suite
loader = unittest.TestLoader()
suite = loader.loadTestsFromTestCase(TestMaternalHealthVectorStore)
# Run tests with detailed output
runner = unittest.TextTestRunner(verbosity=2)
result = runner.run(suite)
# Print summary
print("\n" + "=" * 60)
print("📊 TEST SUMMARY:")
print(f" Tests run: {result.testsRun}")
print(f" Failures: {len(result.failures)}")
print(f" Errors: {len(result.errors)}")
if result.wasSuccessful():
print("✅ ALL TESTS PASSED! Vector store is working perfectly.")
else:
print("❌ Some tests failed. Check output above for details.")
if result.failures:
print("\nFailures:")
for test, traceback in result.failures:
# Extract the last meaningful line from traceback
lines = traceback.strip().split('\n')
error_line = lines[-1] if lines else "Unknown failure"
print(f" - {test}: {error_line}")
if result.errors:
print("\nErrors:")
for test, traceback in result.errors:
# Extract the last meaningful line from traceback
lines = traceback.strip().split('\n')
error_line = lines[-1] if lines else "Unknown error"
print(f" - {test}: {error_line}")
return result.wasSuccessful()
if __name__ == "__main__":
success = run_comprehensive_tests()
exit(0 if success else 1) |