vedaMD / src /embedding_evaluator.py
sniro23's picture
Initial commit without binary files
19aaa42
#!/usr/bin/env python3
"""
Embedding Model Evaluator for Medical Content
Tests different free embedding models to find the best for maternal health guidelines
"""
import json
import numpy as np
from pathlib import Path
from typing import List, Dict, Any, Tuple
import logging
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import time
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class MedicalEmbeddingEvaluator:
"""Evaluates different embedding models for medical content quality"""
def __init__(self, chunks_dir: Path = Path("comprehensive_chunks")):
self.chunks_dir = chunks_dir
self.medical_chunks = []
self.evaluation_results = {}
# Free embedding models to test
self.embedding_models = {
'all-MiniLM-L6-v2': 'sentence-transformers/all-MiniLM-L6-v2',
'all-mpnet-base-v2': 'sentence-transformers/all-mpnet-base-v2',
'all-MiniLM-L12-v2': 'sentence-transformers/all-MiniLM-L12-v2',
'multi-qa-MiniLM-L6-cos-v1': 'sentence-transformers/multi-qa-MiniLM-L6-cos-v1',
'all-distilroberta-v1': 'sentence-transformers/all-distilroberta-v1'
}
# Medical test queries for evaluation
self.test_queries = [
"What is the recommended dosage of magnesium sulfate for preeclampsia?",
"How to manage postpartum hemorrhage in emergency situations?",
"Normal ranges for fetal heart rate during labor",
"Contraindications for vaginal delivery in breech presentation",
"Signs and symptoms of puerperal sepsis",
"Management of gestational diabetes during pregnancy",
"Emergency cesarean section indications",
"Postpartum care guidelines for mother and baby",
"RhESUS incompatibility management protocol",
"Antepartum monitoring guidelines for high-risk pregnancy"
]
def load_medical_chunks(self) -> List[Dict]:
"""Load medical chunks from comprehensive chunking results"""
logger.info("Loading medical chunks for embedding evaluation...")
langchain_file = self.chunks_dir / "langchain_documents_comprehensive.json"
if not langchain_file.exists():
raise FileNotFoundError(f"LangChain documents not found: {langchain_file}")
with open(langchain_file) as f:
chunks_data = json.load(f)
# Filter and prepare chunks for evaluation
medical_chunks = []
for chunk in chunks_data:
content = chunk['page_content']
metadata = chunk['metadata']
# Skip very short chunks
if len(content.strip()) < 100:
continue
medical_chunks.append({
'content': content,
'chunk_type': metadata.get('chunk_type', 'text'),
'clinical_importance': metadata.get('clinical_importance', 0.5),
'source': metadata.get('source', ''),
'has_dosage_info': metadata.get('has_dosage_info', False),
'is_maternal_specific': metadata.get('is_maternal_specific', False),
'has_clinical_protocols': metadata.get('has_clinical_protocols', False)
})
logger.info(f"Loaded {len(medical_chunks)} medical chunks for evaluation")
return medical_chunks
def evaluate_embedding_model(self, model_name: str, model_path: str) -> Dict[str, Any]:
"""Evaluate a single embedding model"""
logger.info(f"Evaluating embedding model: {model_name}")
try:
# Load model
start_time = time.time()
model = SentenceTransformer(model_path)
load_time = time.time() - start_time
# Sample chunks for evaluation (use subset for speed)
sample_chunks = self.medical_chunks[:100] # Use first 100 chunks
chunk_texts = [chunk['content'] for chunk in sample_chunks]
# Generate embeddings for chunks
logger.info(f"Generating embeddings for {len(chunk_texts)} chunks...")
start_time = time.time()
chunk_embeddings = model.encode(chunk_texts, show_progress_bar=True)
chunk_embed_time = time.time() - start_time
# Generate embeddings for test queries
start_time = time.time()
query_embeddings = model.encode(self.test_queries)
query_embed_time = time.time() - start_time
# Evaluation metrics
results = {
'model_name': model_name,
'model_path': model_path,
'load_time': load_time,
'chunk_embed_time': chunk_embed_time,
'query_embed_time': query_embed_time,
'embedding_dimension': chunk_embeddings.shape[1],
'chunks_processed': len(chunk_texts),
'queries_processed': len(self.test_queries)
}
# Test semantic search quality
search_results = self._evaluate_search_quality(
query_embeddings, chunk_embeddings, sample_chunks
)
results.update(search_results)
# Test clustering quality
cluster_results = self._evaluate_clustering_quality(
chunk_embeddings, sample_chunks
)
results.update(cluster_results)
# Calculate overall score
results['overall_score'] = self._calculate_overall_score(results)
logger.info(f"βœ… {model_name} evaluation complete - Overall Score: {results['overall_score']:.3f}")
return results
except Exception as e:
logger.error(f"❌ Failed to evaluate {model_name}: {e}")
return {
'model_name': model_name,
'model_path': model_path,
'error': str(e),
'overall_score': 0.0
}
def _evaluate_search_quality(self, query_embeddings: np.ndarray,
chunk_embeddings: np.ndarray,
chunks: List[Dict]) -> Dict[str, float]:
"""Evaluate semantic search quality"""
# Calculate similarities between queries and chunks
similarities = cosine_similarity(query_embeddings, chunk_embeddings)
search_metrics = {
'avg_max_similarity': 0.0,
'medical_content_precision': 0.0,
'dosage_query_accuracy': 0.0,
'emergency_query_accuracy': 0.0
}
total_queries = len(self.test_queries)
for i, query in enumerate(self.test_queries):
query_similarities = similarities[i]
top_indices = np.argsort(query_similarities)[::-1][:5] # Top 5 results
# Max similarity for this query
max_sim = np.max(query_similarities)
search_metrics['avg_max_similarity'] += max_sim
# Check if top results contain relevant medical content
top_chunks = [chunks[idx] for idx in top_indices]
medical_relevant = sum(1 for chunk in top_chunks
if chunk['clinical_importance'] > 0.7)
search_metrics['medical_content_precision'] += medical_relevant / 5
# Specific query type accuracy
if 'dosage' in query.lower() or 'dose' in query.lower():
dosage_relevant = sum(1 for chunk in top_chunks
if chunk['has_dosage_info'])
search_metrics['dosage_query_accuracy'] += dosage_relevant / 5
if 'emergency' in query.lower() or 'urgent' in query.lower():
emergency_relevant = sum(1 for chunk in top_chunks
if chunk['chunk_type'] == 'emergency')
search_metrics['emergency_query_accuracy'] += emergency_relevant / 5
# Average the metrics
for key in search_metrics:
search_metrics[key] /= total_queries
return search_metrics
def _evaluate_clustering_quality(self, embeddings: np.ndarray,
chunks: List[Dict]) -> Dict[str, float]:
"""Evaluate how well embeddings cluster similar medical content"""
# Perform clustering
n_clusters = min(8, len(chunks) // 10) # Reasonable number of clusters
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
cluster_labels = kmeans.fit_predict(embeddings)
# Calculate cluster purity based on chunk types
cluster_metrics = {
'cluster_purity': 0.0,
'dosage_cluster_coherence': 0.0,
'maternal_cluster_coherence': 0.0
}
# Calculate cluster purity
total_items = len(chunks)
for cluster_id in range(n_clusters):
cluster_indices = np.where(cluster_labels == cluster_id)[0]
if len(cluster_indices) == 0:
continue
cluster_chunks = [chunks[i] for i in cluster_indices]
# Find dominant chunk type in this cluster
chunk_types = [chunk['chunk_type'] for chunk in cluster_chunks]
if chunk_types:
dominant_type = max(set(chunk_types), key=chunk_types.count)
purity = chunk_types.count(dominant_type) / len(chunk_types)
cluster_metrics['cluster_purity'] += purity * len(cluster_indices) / total_items
# Check dosage content clustering
dosage_chunks = [chunk for chunk in cluster_chunks if chunk['has_dosage_info']]
if len(cluster_chunks) > 0:
dosage_ratio = len(dosage_chunks) / len(cluster_chunks)
if dosage_ratio > 0.5: # If majority are dosage chunks
cluster_metrics['dosage_cluster_coherence'] += dosage_ratio
# Check maternal content clustering
maternal_chunks = [chunk for chunk in cluster_chunks if chunk['is_maternal_specific']]
if len(cluster_chunks) > 0:
maternal_ratio = len(maternal_chunks) / len(cluster_chunks)
if maternal_ratio > 0.5: # If majority are maternal chunks
cluster_metrics['maternal_cluster_coherence'] += maternal_ratio
return cluster_metrics
def _calculate_overall_score(self, results: Dict[str, Any]) -> float:
"""Calculate overall score for the embedding model"""
if 'error' in results:
return 0.0
# Weighted scoring components
weights = {
'search_quality': 0.4,
'clustering_quality': 0.2,
'speed': 0.2,
'medical_relevance': 0.2
}
# Search quality score (0-1)
search_score = (
results.get('avg_max_similarity', 0) * 0.4 +
results.get('medical_content_precision', 0) * 0.3 +
results.get('dosage_query_accuracy', 0) * 0.15 +
results.get('emergency_query_accuracy', 0) * 0.15
)
# Clustering quality score (0-1)
cluster_score = (
results.get('cluster_purity', 0) * 0.5 +
results.get('dosage_cluster_coherence', 0) * 0.25 +
results.get('maternal_cluster_coherence', 0) * 0.25
)
# Speed score (inverse of time, normalized)
total_time = results.get('chunk_embed_time', 1) + results.get('query_embed_time', 1)
speed_score = max(0, 1 - (total_time / 100)) # Normalize to 0-1
# Medical relevance (based on search accuracy for medical queries)
medical_score = (
results.get('medical_content_precision', 0) * 0.6 +
results.get('dosage_query_accuracy', 0) * 0.4
)
# Calculate weighted overall score
overall = (
search_score * weights['search_quality'] +
cluster_score * weights['clustering_quality'] +
speed_score * weights['speed'] +
medical_score * weights['medical_relevance']
)
return min(1.0, max(0.0, overall))
def run_comprehensive_evaluation(self) -> Dict[str, Any]:
"""Run comprehensive evaluation of all embedding models"""
logger.info("Starting comprehensive embedding model evaluation...")
# Load medical chunks
self.medical_chunks = self.load_medical_chunks()
if len(self.medical_chunks) == 0:
raise ValueError("No medical chunks loaded for evaluation")
# Evaluate each model
results = {}
for model_name, model_path in self.embedding_models.items():
logger.info(f"\nπŸ“Š Evaluating: {model_name}")
results[model_name] = self.evaluate_embedding_model(model_name, model_path)
# Generate summary report
summary = self._generate_evaluation_summary(results)
# Save results
output_file = Path("src/embedding_evaluation_results.json")
with open(output_file, 'w') as f:
json.dump({
'evaluation_summary': summary,
'detailed_results': results,
'test_queries': self.test_queries,
'chunks_evaluated': len(self.medical_chunks)
}, f, indent=2)
logger.info(f"πŸ“‹ Evaluation results saved to: {output_file}")
return summary
def _generate_evaluation_summary(self, results: Dict[str, Any]) -> Dict[str, Any]:
"""Generate evaluation summary with recommendations"""
valid_results = {k: v for k, v in results.items() if 'error' not in v}
if not valid_results:
return {'error': 'No models evaluated successfully'}
# Find best model
best_model = max(valid_results.items(), key=lambda x: x[1]['overall_score'])
# Calculate averages
avg_scores = {}
for metric in ['overall_score', 'avg_max_similarity', 'medical_content_precision']:
scores = [r.get(metric, 0) for r in valid_results.values()]
avg_scores[f'avg_{metric}'] = sum(scores) / len(scores) if scores else 0
summary = {
'best_model': {
'name': best_model[0],
'path': best_model[1]['model_path'],
'score': best_model[1]['overall_score'],
'strengths': []
},
'model_rankings': sorted(
[(name, res['overall_score']) for name, res in valid_results.items()],
key=lambda x: x[1], reverse=True
),
'evaluation_metrics': avg_scores,
'recommendation': '',
'models_tested': len(results),
'successful_evaluations': len(valid_results)
}
# Add strengths and recommendation
best_result = best_model[1]
strengths = []
if best_result.get('medical_content_precision', 0) > 0.7:
strengths.append("High medical content precision")
if best_result.get('dosage_query_accuracy', 0) > 0.6:
strengths.append("Good dosage information retrieval")
if best_result.get('cluster_purity', 0) > 0.6:
strengths.append("Effective content clustering")
if best_result.get('chunk_embed_time', 100) < 30:
strengths.append("Fast embedding generation")
summary['best_model']['strengths'] = strengths
summary['recommendation'] = (
f"Recommended model: {best_model[0]} with overall score {best_result['overall_score']:.3f}. "
f"This model shows {', '.join(strengths)} and is well-suited for maternal health content."
)
return summary
def main():
"""Main evaluation function"""
evaluator = MedicalEmbeddingEvaluator()
try:
summary = evaluator.run_comprehensive_evaluation()
# Print summary
logger.info("=" * 80)
logger.info("EMBEDDING MODEL EVALUATION COMPLETE!")
logger.info("=" * 80)
logger.info(f"πŸ† Best Model: {summary['best_model']['name']}")
logger.info(f"πŸ“Š Overall Score: {summary['best_model']['score']:.3f}")
logger.info(f"πŸ’ͺ Strengths: {', '.join(summary['best_model']['strengths'])}")
logger.info(f"πŸ“ Recommendation: {summary['recommendation']}")
logger.info("\nπŸ“ˆ Model Rankings:")
for i, (model, score) in enumerate(summary['model_rankings'], 1):
logger.info(f"{i}. {model}: {score:.3f}")
logger.info("=" * 80)
return summary
except Exception as e:
logger.error(f"❌ Evaluation failed: {e}")
return None
if __name__ == "__main__":
main()