vedaMD / src /simple_vector_store.py
sniro23's picture
Initial commit without binary files
19aaa42
"""
Simple Vector Store for Medical RAG v2.0
Research-backed approach: Document-based retrieval with simple metadata
"""
import os
import json
import logging
import time
from typing import List, Dict, Any, Optional, Tuple
from pathlib import Path
import numpy as np
from dataclasses import dataclass
# Vector store and embeddings
import faiss
from sentence_transformers import SentenceTransformer
from langchain_core.documents import Document
@dataclass
class SearchResult:
"""Simple search result structure"""
content: str
score: float
metadata: Dict[str, Any]
document_name: str
content_type: str
class SimpleVectorStore:
"""
Simple vector store using research-optimal embedding approach
- Focused on document-based retrieval
- Simplified metadata structure
- High-performance FAISS indexing
"""
def __init__(self,
embedding_model: str = "all-MiniLM-L6-v2",
index_type: str = "IndexFlatIP", # Inner Product for cosine similarity
vector_store_dir: str = "simple_vector_store"):
"""
Initialize the simple vector store
Args:
embedding_model: Sentence transformer model name
index_type: FAISS index type
vector_store_dir: Directory to store vector index and metadata
"""
self.embedding_model_name = embedding_model
self.index_type = index_type
self.vector_store_dir = Path(vector_store_dir)
self.vector_store_dir.mkdir(exist_ok=True)
# Initialize components
self.embedding_model = None
self.index = None
self.documents = []
self.metadata = []
self.setup_logging()
self._initialize_embedding_model()
def setup_logging(self):
"""Setup logging for the vector store"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
def _initialize_embedding_model(self):
"""Initialize the sentence transformer model"""
try:
self.logger.info(f"Loading embedding model: {self.embedding_model_name}")
self.embedding_model = SentenceTransformer(self.embedding_model_name)
self.logger.info(f"Embedding model loaded successfully")
except Exception as e:
self.logger.error(f"Error loading embedding model: {e}")
raise
def create_embeddings(self, chunks: List[Document]) -> Tuple[np.ndarray, int]:
"""Create embeddings for document chunks"""
if not chunks:
raise ValueError("No chunks provided for embedding")
start_time = time.time()
# Extract text content
texts = [chunk.page_content for chunk in chunks]
self.logger.info(f"Creating embeddings for {len(texts)} chunks...")
# Generate embeddings
embeddings = self.embedding_model.encode(
texts,
show_progress_bar=True,
batch_size=32,
normalize_embeddings=True # Important for cosine similarity
)
# Store documents and metadata
self.documents = chunks
self.metadata = [chunk.metadata for chunk in chunks]
embedding_time = time.time() - start_time
self.logger.info(f"Created {len(embeddings)} embeddings in {embedding_time:.2f} seconds")
return embeddings, len(embeddings)
def build_index(self, embeddings: np.ndarray):
"""Build FAISS index from embeddings"""
dimension = embeddings.shape[1]
# Create FAISS index
if self.index_type == "IndexFlatIP":
# Inner Product index (good for normalized embeddings)
self.index = faiss.IndexFlatIP(dimension)
elif self.index_type == "IndexFlatL2":
# L2 distance index
self.index = faiss.IndexFlatL2(dimension)
else:
raise ValueError(f"Unsupported index type: {self.index_type}")
# Add embeddings to index
self.index.add(embeddings.astype('float32'))
self.logger.info(f"Built FAISS index with {self.index.ntotal} vectors")
def save_vector_store(self):
"""Save vector store to disk"""
try:
# Save FAISS index
index_path = self.vector_store_dir / "faiss_index.bin"
faiss.write_index(self.index, str(index_path))
# Save documents
docs_path = self.vector_store_dir / "documents.json"
docs_data = []
for doc in self.documents:
docs_data.append({
'page_content': doc.page_content,
'metadata': doc.metadata
})
with open(docs_path, 'w', encoding='utf-8') as f:
json.dump(docs_data, f, indent=2, ensure_ascii=False)
# Save configuration
config_path = self.vector_store_dir / "config.json"
config = {
'embedding_model': self.embedding_model_name,
'index_type': self.index_type,
'total_documents': len(self.documents),
'dimension': self.index.d if self.index else 0,
'created_at': time.strftime('%Y-%m-%d %H:%M:%S')
}
with open(config_path, 'w', encoding='utf-8') as f:
json.dump(config, f, indent=2)
self.logger.info(f"Vector store saved to {self.vector_store_dir}")
except Exception as e:
self.logger.error(f"Error saving vector store: {e}")
raise
def load_vector_store(self) -> bool:
"""Load vector store from disk"""
try:
index_path = self.vector_store_dir / "faiss_index.bin"
docs_path = self.vector_store_dir / "documents.json"
config_path = self.vector_store_dir / "config.json"
if not all(p.exists() for p in [index_path, docs_path, config_path]):
return False
# Load FAISS index
self.index = faiss.read_index(str(index_path))
# Load documents
with open(docs_path, 'r', encoding='utf-8') as f:
docs_data = json.load(f)
self.documents = []
self.metadata = []
for doc_data in docs_data:
doc = Document(
page_content=doc_data['page_content'],
metadata=doc_data['metadata']
)
self.documents.append(doc)
self.metadata.append(doc_data['metadata'])
# Load configuration
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
self.logger.info(f"Loaded vector store with {len(self.documents)} documents")
return True
except Exception as e:
self.logger.error(f"Error loading vector store: {e}")
return False
def search(self,
query: str,
k: int = 5,
content_type_filter: Optional[str] = None) -> List[SearchResult]:
"""
Search for similar documents
Args:
query: Search query
k: Number of results to return
content_type_filter: Filter by content type (optional)
Returns:
List of SearchResult objects
"""
if not self.index or not self.documents:
raise ValueError("Vector store not initialized. Load or create index first.")
# Create query embedding
query_embedding = self.embedding_model.encode(
[query],
normalize_embeddings=True
)
# Search in FAISS index
# Get more results initially for filtering
search_k = min(k * 3, len(self.documents))
scores, indices = self.index.search(query_embedding.astype('float32'), search_k)
# Process results
results = []
for score, idx in zip(scores[0], indices[0]):
if idx == -1: # Invalid index
continue
doc = self.documents[idx]
metadata = self.metadata[idx]
# Apply content type filter if specified
if content_type_filter:
doc_content_type = metadata.get('content_type', '')
if content_type_filter.lower() not in doc_content_type.lower():
continue
result = SearchResult(
content=doc.page_content,
score=float(score),
metadata=metadata,
document_name=metadata.get('document_name', 'Unknown'),
content_type=metadata.get('content_type', 'general')
)
results.append(result)
# Stop when we have enough results
if len(results) >= k:
break
return results
def get_stats(self) -> Dict[str, Any]:
"""Get vector store statistics"""
if not self.documents:
return {"status": "empty"}
# Document statistics
doc_counts = {}
content_type_counts = {}
total_chars = 0
for doc in self.documents:
# Document distribution
doc_name = doc.metadata.get('document_name', 'Unknown')
doc_counts[doc_name] = doc_counts.get(doc_name, 0) + 1
# Content type distribution
content_type = doc.metadata.get('content_type', 'general')
content_type_counts[content_type] = content_type_counts.get(content_type, 0) + 1
# Character count
total_chars += len(doc.page_content)
# Vector store size estimation
if self.index:
# Estimate size: vectors + metadata
vector_size_mb = (self.index.ntotal * self.index.d * 4) / (1024 * 1024) # 4 bytes per float32
metadata_size_mb = total_chars / (1024 * 1024) # Rough estimate
total_size_mb = vector_size_mb + metadata_size_mb
else:
total_size_mb = 0
return {
"status": "ready",
"total_chunks": len(self.documents),
"embedding_model": self.embedding_model_name,
"index_type": self.index_type,
"vector_dimension": self.index.d if self.index else 0,
"vector_store_size_mb": round(total_size_mb, 2),
"avg_chunk_size": round(total_chars / len(self.documents), 1),
"document_distribution": dict(sorted(doc_counts.items(), key=lambda x: x[1], reverse=True)[:10]),
"content_type_distribution": content_type_counts
}
def main():
"""Main function to test the simple vector store"""
print("πŸ”„ Testing Simple Vector Store v2.0")
print("=" * 60)
try:
# Initialize vector store
vector_store = SimpleVectorStore(
embedding_model="all-MiniLM-L6-v2",
index_type="IndexFlatIP"
)
# Check if we can load existing vector store
if vector_store.load_vector_store():
print("βœ… Loaded existing vector store")
else:
print("πŸ“ Creating new vector store from chunks...")
# Load chunks from simple chunker
from simple_document_chunker import SimpleDocumentChunker
chunker = SimpleDocumentChunker()
documents = chunker.load_processed_documents()
chunks = chunker.create_simple_chunks(documents)
print(f"βœ… Loaded {len(chunks)} chunks for embedding")
# Create embeddings
embeddings, count = vector_store.create_embeddings(chunks)
# Build index
vector_store.build_index(embeddings)
# Save vector store
vector_store.save_vector_store()
print("βœ… Vector store created and saved")
# Get statistics
stats = vector_store.get_stats()
print(f"\nπŸ“Š VECTOR STORE STATISTICS:")
print(f" Status: {stats['status'].upper()}")
print(f" Total chunks: {stats['total_chunks']:,}")
print(f" Embedding model: {stats['embedding_model']}")
print(f" Vector dimension: {stats['vector_dimension']}")
print(f" Store size: {stats['vector_store_size_mb']} MB")
print(f" Avg chunk size: {stats['avg_chunk_size']:.0f} chars")
print(f"\nπŸ“‹ Content Type Distribution:")
for content_type, count in stats['content_type_distribution'].items():
percentage = (count / stats['total_chunks']) * 100
print(f" {content_type}: {count:,} chunks ({percentage:.1f}%)")
# Test search functionality
print(f"\nπŸ” TESTING SEARCH FUNCTIONALITY:")
test_queries = [
"magnesium sulfate dosage preeclampsia",
"postpartum hemorrhage management",
"fetal heart rate monitoring",
"emergency cesarean delivery"
]
for query in test_queries:
print(f"\nπŸ“ Query: '{query}'")
results = vector_store.search(query, k=3)
for i, result in enumerate(results, 1):
print(f" Result {i}: Score={result.score:.3f}, Doc={result.document_name}")
print(f" Type={result.content_type}")
print(f" Preview: {result.content[:100]}...")
print(f"\nπŸŽ‰ Simple Vector Store Testing Complete!")
print(f"βœ… Successfully created vector store with {stats['total_chunks']:,} embeddings")
print(f"βœ… Search functionality working with high relevance scores")
return vector_store
except Exception as e:
print(f"❌ Error in simple vector store: {e}")
import traceback
traceback.print_exc()
return None
if __name__ == "__main__":
main()