""" Groq Medical Chatbot Interface v2.0 FREE Groq Cloud API integration for advanced medical reasoning """ import gradio as gr import time import json import os from datetime import datetime from typing import List, Tuple, Dict, Any # Import our Groq medical RAG system from groq_medical_rag import GroqMedicalRAG, MedicalResponse class GroqMedicalChatbot: """Professional medical chatbot interface using Groq-powered RAG system""" def __init__(self): """Initialize the Groq medical chatbot""" self.rag_system = None self.chat_history = [] self.session_stats = { "queries_processed": 0, "total_response_time": 0, "avg_confidence": 0, "llm_responses": 0, "template_responses": 0, "session_start": datetime.now().strftime("%Y-%m-%d %H:%M:%S") } # Check for Groq API key self.groq_api_key = os.getenv("GROQ_API_KEY") # Initialize RAG system self._initialize_rag_system() def _initialize_rag_system(self): """Initialize the Groq RAG system""" try: if not self.groq_api_key: print("ā ļø GROQ_API_KEY not found in environment variables") print("š Get your free API key at: https://console.groq.com/keys") print("š Set it with: export GROQ_API_KEY='your_api_key_here'") self.rag_system = None return print("š Initializing Groq Medical RAG System...") self.rag_system = GroqMedicalRAG(groq_api_key=self.groq_api_key) print("ā Groq Medical RAG System initialized successfully!") except Exception as e: print(f"ā Error initializing Groq RAG system: {e}") print("š Attempting to initialize without Groq...") # Fallback to simple RAG system try: from simple_medical_rag import SimpleMedicalRAG self.rag_system = SimpleMedicalRAG() print("ā Fallback to simple medical RAG system") except Exception as e2: print(f"ā Failed to initialize any RAG system: {e2}") self.rag_system = None def process_query(self, query: str, history: List[Tuple[str, str]], use_llm: bool = True) -> Tuple[List[Tuple[str, str]], str]: """Process medical query and return response""" if not self.rag_system: error_msg = "ā **System Error**: Medical RAG system not initialized.\n\n" error_msg += "Please ensure GROQ_API_KEY is set:\n" error_msg += "1. Get free API key: https://console.groq.com/keys\n" error_msg += "2. Set environment variable: `export GROQ_API_KEY='your_key'`\n" error_msg += "3. Restart the application" history.append((query, error_msg)) return history, "" if not query.strip(): return history, "" start_time = time.time() try: # Check if we have Groq integration has_groq = hasattr(self.rag_system, 'groq_client') # Process query with RAG system if has_groq: response = self.rag_system.query(query, k=5, use_llm=use_llm) else: response = self.rag_system.query(query, k=5) response.llm_reasoning = False # Mark as template-based # Format response for display formatted_response = self._format_response_for_display(response, has_groq) # Update session statistics query_time = time.time() - start_time self._update_session_stats(query_time, response.confidence, response.llm_reasoning) # Add to chat history history.append((query, formatted_response)) return history, "" except Exception as e: error_msg = f"ā **Error processing query**: {str(e)}\n\nā ļø Please try rephrasing your question or contact support." history.append((query, error_msg)) return history, "" def _format_response_for_display(self, response: MedicalResponse, has_groq: bool) -> str: """Format medical response for beautiful display in Gradio""" # LLM vs Template indicator reasoning_emoji = "š¤" if response.llm_reasoning else "š" reasoning_text = "AI Reasoning" if response.llm_reasoning else "Template-based" # Confidence level indicator confidence_emoji = "š¢" if response.confidence > 0.7 else "š”" if response.confidence > 0.5 else "š“" confidence_text = f"{confidence_emoji} **Confidence: {response.confidence:.1%}**" # Response type indicator type_emoji = "š" if "dosage" in response.response_type else "šØ" if "emergency" in response.response_type else "š„" # Main response formatted_response = f""" {type_emoji} **Medical Information** {response.answer} --- š **Response Details** {reasoning_emoji} **Method**: {reasoning_text} {confidence_text} š **Sources**: {len(response.sources)} documents referenced """ # Add top sources if response.sources: formatted_response += "š **Primary Sources**:\n" for i, source in enumerate(response.sources[:3], 1): doc_name = source['document'].replace('.pdf', '').replace('-', ' ').title() formatted_response += f"{i}. {doc_name} (Relevance: {source['relevance_score']:.1%})\n" formatted_response += "\n" # Add Groq status if applicable if has_groq and response.llm_reasoning: formatted_response += "š **Powered by**: Groq Cloud (FREE tier) + Llama 3.1-8B\n\n" elif has_groq and not response.llm_reasoning: formatted_response += "ā” **Fallback**: Template-based response (Groq available)\n\n" elif not has_groq: formatted_response += "ā ļø **Note**: Using template responses (Set GROQ_API_KEY for AI reasoning)\n\n" # Add medical disclaimer formatted_response += f""" --- {response.medical_disclaimer} š **Note**: This response is based on Sri Lankan maternal health guidelines and should be used in conjunction with current clinical protocols. """ return formatted_response def _update_session_stats(self, query_time: float, confidence: float, llm_reasoning: bool): """Update session statistics""" self.session_stats["queries_processed"] += 1 self.session_stats["total_response_time"] += query_time if llm_reasoning: self.session_stats["llm_responses"] += 1 else: self.session_stats["template_responses"] += 1 # Update average confidence current_avg = self.session_stats["avg_confidence"] queries = self.session_stats["queries_processed"] self.session_stats["avg_confidence"] = ((current_avg * (queries - 1)) + confidence) / queries def get_system_info(self) -> str: """Get system information for display""" if not self.rag_system: return """ā **System Status**: Not initialized š§ **Setup Required**: 1. Get free Groq API key: https://console.groq.com/keys 2. Set environment variable: `export GROQ_API_KEY='your_key'` 3. Restart the application š” **Groq Benefits**: FREE LLM reasoning for medical queries""" try: stats = self.rag_system.get_system_stats() has_groq = 'groq_integration' in stats system_info = f""" š„ **Sri Lankan Maternal Health Assistant v2.0** š **System Status**: {stats['status'].upper()} ā **Knowledge Base**: ⢠š Total Documents: {stats['vector_store']['total_chunks']:,} medical chunks ⢠š§ Embedding Model: {stats['vector_store']['embedding_model']} ⢠š¾ Vector Store Size: {stats['vector_store']['vector_store_size_mb']} MB ⢠┠Approach: Simplified document-based retrieval """ # Add Groq integration info if has_groq: groq_info = stats['groq_integration'] system_info += f""" **š¤ Groq Integration** (FREE): ⢠Model: {groq_info['groq_model']} ⢠Status: {groq_info['groq_api_status']} ā ⢠LLM Reasoning: {groq_info['llm_reasoning']} ⢠Daily Limit: 5,000 tokens (FREE tier) """ else: system_info += """ **ā ļø Groq Integration**: Not available ⢠Get free API key: https://console.groq.com/keys ⢠Enables advanced medical reasoning ⢠5,000 free tokens/day """ # Add content distribution system_info += "**Content Distribution**:\n" for content_type, count in stats['vector_store']['content_type_distribution'].items(): percentage = (count / stats['vector_store']['total_chunks']) * 100 content_info = content_type.replace('_', ' ').title() system_info += f"⢠{content_info}: {count:,} chunks ({percentage:.1f}%)\n" return system_info except Exception as e: return f"ā **Error retrieving system info**: {str(e)}" def get_session_stats(self) -> str: """Get session statistics for display""" if self.session_stats["queries_processed"] == 0: return "š **Session Statistics**: No queries processed yet" avg_response_time = self.session_stats["total_response_time"] / self.session_stats["queries_processed"] llm_percentage = (self.session_stats["llm_responses"] / self.session_stats["queries_processed"]) * 100 return f""" š **Session Statistics** š **Session Started**: {self.session_stats["session_start"]} š **Queries Processed**: {self.session_stats["queries_processed"]} ā” **Avg Response Time**: {avg_response_time:.2f} seconds šÆ **Avg Confidence**: {self.session_stats["avg_confidence"]:.1%} **Response Methods**: š¤ **AI Reasoning**: {self.session_stats["llm_responses"]} ({llm_percentage:.1f}%) š **Template-based**: {self.session_stats["template_responses"]} ({100-llm_percentage:.1f}%) """ def clear_chat(self) -> Tuple[List, str]: """Clear chat history""" self.chat_history = [] return [], "" def get_example_queries(self) -> List[str]: """Get example medical queries""" return [ "What is the dosage of magnesium sulfate for preeclampsia?", "How to manage postpartum hemorrhage emergency?", "Normal fetal heart rate during labor monitoring?", "Management protocol for breech delivery?", "Antenatal care schedule for high-risk pregnancies?", "Signs and symptoms of preeclampsia?", "When to perform cesarean delivery?", "Postpartum care guidelines for new mothers?" ] def create_groq_medical_chatbot_interface(): """Create the main Gradio interface""" # Initialize chatbot chatbot = GroqMedicalChatbot() # Custom CSS for medical theme css = """ .gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); } .main-header { text-align: center; color: #2c5aa0; font-size: 2.2em; font-weight: bold; margin-bottom: 20px; text-shadow: 2px 2px 4px rgba(0,0,0,0.1); } .description { text-align: center; font-size: 1.1em; color: #555; margin-bottom: 25px; padding: 15px; background: rgba(255,255,255,0.9); border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); } .tab-content { background: white; border-radius: 15px; padding: 20px; box-shadow: 0 4px 20px rgba(0,0,0,0.1); } .medical-disclaimer { background: #fff3cd; border: 1px solid #ffeaa7; border-radius: 8px; padding: 12px; margin: 10px 0; font-size: 0.9em; color: #856404; } """ with gr.Blocks(css=css, title="Sri Lankan Maternal Health Assistant") as interface: # Header gr.HTML("""
macOS/Linux:
export GROQ_API_KEY='your_api_key_here'
Windows:
set GROQ_API_KEY=your_api_key_here
After setting the API key, restart this application to enable AI reasoning.