""" Simple Medical Chatbot Interface v2.0 Beautiful Gradio interface for the simplified medical RAG system """ import gradio as gr import time import json from datetime import datetime from typing import List, Tuple, Dict, Any # Import our simplified medical RAG system from simple_medical_rag import SimpleMedicalRAG, MedicalResponse class SimpleMedicalChatbot: """Professional medical chatbot interface using simplified RAG system""" def __init__(self): """Initialize the medical chatbot""" self.rag_system = None self.chat_history = [] self.session_stats = { "queries_processed": 0, "total_response_time": 0, "avg_confidence": 0, "session_start": datetime.now().strftime("%Y-%m-%d %H:%M:%S") } # Initialize RAG system self._initialize_rag_system() def _initialize_rag_system(self): """Initialize the RAG system""" try: print("šŸš€ Initializing Medical RAG System...") self.rag_system = SimpleMedicalRAG() print("āœ… Medical RAG System initialized successfully!") except Exception as e: print(f"āŒ Error initializing RAG system: {e}") self.rag_system = None def process_query(self, query: str, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]: """Process medical query and return response""" if not self.rag_system: error_msg = "āŒ **System Error**: Medical RAG system not initialized. Please refresh and try again." history.append((query, error_msg)) return history, "" if not query.strip(): return history, "" start_time = time.time() try: # Process query with RAG system response = self.rag_system.query(query, k=5) # Format response for display formatted_response = self._format_response_for_display(response) # Update session statistics query_time = time.time() - start_time self._update_session_stats(query_time, response.confidence) # Add to chat history history.append((query, formatted_response)) return history, "" except Exception as e: error_msg = f"āŒ **Error processing query**: {str(e)}\n\nāš ļø Please try rephrasing your question or contact support." history.append((query, error_msg)) return history, "" def _format_response_for_display(self, response: MedicalResponse) -> str: """Format medical response for beautiful display in Gradio""" # Confidence level indicator confidence_emoji = "🟢" if response.confidence > 0.7 else "🟔" if response.confidence > 0.5 else "šŸ”“" confidence_text = f"{confidence_emoji} **Confidence: {response.confidence:.1%}**" # Response type indicator type_emoji = "šŸ’Š" if "dosage" in response.response_type else "🚨" if "emergency" in response.response_type else "šŸ„" # Main response formatted_response = f""" {type_emoji} **Medical Information** {response.answer} --- šŸ“Š **Response Details** {confidence_text} šŸ“š **Sources**: {len(response.sources)} documents referenced """ # Add top sources if response.sources: formatted_response += "šŸ“– **Primary Sources**:\n" for i, source in enumerate(response.sources[:3], 1): doc_name = source['document'].replace('.pdf', '').replace('-', ' ').title() formatted_response += f"{i}. {doc_name} (Relevance: {source['relevance_score']:.1%})\n" formatted_response += "\n" # Add medical disclaimer formatted_response += f""" --- {response.medical_disclaimer} šŸ”— **Note**: This response is based on Sri Lankan maternal health guidelines and should be used in conjunction with current clinical protocols. """ return formatted_response def _update_session_stats(self, query_time: float, confidence: float): """Update session statistics""" self.session_stats["queries_processed"] += 1 self.session_stats["total_response_time"] += query_time # Update average confidence current_avg = self.session_stats["avg_confidence"] queries = self.session_stats["queries_processed"] self.session_stats["avg_confidence"] = ((current_avg * (queries - 1)) + confidence) / queries def get_system_info(self) -> str: """Get system information for display""" if not self.rag_system: return "āŒ **System Status**: Not initialized" try: stats = self.rag_system.get_system_stats() system_info = f""" šŸ„ **Sri Lankan Maternal Health Assistant v2.0** šŸ“Š **System Status**: {stats['status'].upper()} āœ… **Knowledge Base**: • šŸ“š Total Documents: {stats['vector_store']['total_chunks']:,} medical chunks • 🧠 Embedding Model: {stats['vector_store']['embedding_model']} • šŸ’¾ Vector Store Size: {stats['vector_store']['vector_store_size_mb']} MB • ⚔ Approach: Simplified document-based retrieval **Content Distribution**: """ # Add content distribution for content_type, count in stats['vector_store']['content_type_distribution'].items(): percentage = (count / stats['vector_store']['total_chunks']) * 100 content_info = content_type.replace('_', ' ').title() system_info += f"• {content_info}: {count:,} chunks ({percentage:.1f}%)\n" return system_info except Exception as e: return f"āŒ **Error retrieving system info**: {str(e)}" def get_session_stats(self) -> str: """Get session statistics for display""" if self.session_stats["queries_processed"] == 0: return "šŸ“ˆ **Session Statistics**: No queries processed yet" avg_response_time = self.session_stats["total_response_time"] / self.session_stats["queries_processed"] return f""" šŸ“ˆ **Session Statistics** šŸ• **Session Started**: {self.session_stats["session_start"]} šŸ“ **Queries Processed**: {self.session_stats["queries_processed"]} ⚔ **Avg Response Time**: {avg_response_time:.2f} seconds šŸŽÆ **Avg Confidence**: {self.session_stats["avg_confidence"]:.1%} """ def clear_chat(self) -> Tuple[List, str]: """Clear chat history""" self.chat_history = [] return [], "" def get_example_queries(self) -> List[str]: """Get example medical queries""" return [ "What is the dosage of magnesium sulfate for preeclampsia?", "How to manage postpartum hemorrhage emergency?", "Normal fetal heart rate during labor monitoring?", "Management protocol for breech delivery?", "Antenatal care schedule for high-risk pregnancies?", "Signs and symptoms of preeclampsia?", "When to perform cesarean delivery?", "Postpartum care guidelines for new mothers?" ] def create_medical_chatbot_interface(): """Create the main Gradio interface""" # Initialize chatbot chatbot = SimpleMedicalChatbot() # Custom CSS for medical theme css = """ .gradio-container { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; } .medical-header { background: white; padding: 20px; border-radius: 10px; margin-bottom: 20px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); } .chat-container { background: white; border-radius: 15px; box-shadow: 0 8px 25px rgba(0, 0, 0, 0.1); } .medical-disclaimer { background: #fff3cd; border: 1px solid #ffeaa7; border-radius: 8px; padding: 15px; margin: 10px 0; color: #856404; } .example-queries { background: #e8f5e8; border-radius: 8px; padding: 15px; margin: 10px 0; } """ with gr.Blocks(css=css, title="Sri Lankan Maternal Health Assistant", theme=gr.themes.Soft()) as interface: # Header gr.Markdown(""" # šŸ„ Sri Lankan Maternal Health Assistant v2.0 ### Simplified Document-Based Medical RAG System **Professional medical guidance based on Sri Lankan maternal health guidelines** """, elem_classes=["medical-header"]) with gr.Row(): with gr.Column(scale=2): # Main chat interface with gr.Group(elem_classes=["chat-container"]): gr.Markdown("## šŸ’¬ Medical Query Interface") chatbot_display = gr.Chatbot( label="Medical Assistant", height=500, show_label=False, container=True, bubble_full_width=False ) with gr.Row(): query_input = gr.Textbox( placeholder="Ask a medical question about maternal health...", label="Your Medical Query", lines=2, scale=4 ) submit_btn = gr.Button("šŸ” Ask", variant="primary", scale=1) with gr.Row(): clear_btn = gr.Button("šŸ—‘ļø Clear Chat", variant="secondary") refresh_btn = gr.Button("šŸ”„ Refresh System", variant="secondary") with gr.Column(scale=1): # System information and examples with gr.Group(): gr.Markdown("## šŸ“Š System Information") system_info_display = gr.Markdown( chatbot.get_system_info(), label="System Status" ) with gr.Group(): gr.Markdown("## šŸ“ˆ Session Statistics") session_stats_display = gr.Markdown( chatbot.get_session_stats(), label="Current Session" ) # Example queries with gr.Group(elem_classes=["example-queries"]): gr.Markdown("## šŸ’” Example Queries") example_queries = chatbot.get_example_queries() for i, example in enumerate(example_queries[:4]): example_btn = gr.Button( f"šŸ“ {example}", variant="secondary", size="sm" ) example_btn.click( fn=lambda x=example: x, outputs=query_input ) # Medical disclaimer gr.Markdown(""" ## āš ļø Important Medical Disclaimer This system provides information from Sri Lankan maternal health guidelines for **educational purposes only**. **Always consult qualified healthcare providers for**: - Medical decisions and patient care - Emergency medical situations - Clinical diagnosis and treatment - Medication administration This tool is designed to **supplement**, not replace, professional medical judgment. """, elem_classes=["medical-disclaimer"]) # Event handlers def submit_query(query, history): """Handle query submission""" new_history, _ = chatbot.process_query(query, history) return new_history, "", chatbot.get_session_stats() def refresh_system(): """Refresh system information""" return chatbot.get_system_info(), chatbot.get_session_stats() def clear_chat_handler(): """Handle chat clearing""" new_history, _ = chatbot.clear_chat() return new_history, "", chatbot.get_session_stats() # Connect event handlers submit_btn.click( fn=submit_query, inputs=[query_input, chatbot_display], outputs=[chatbot_display, query_input, session_stats_display] ) query_input.submit( fn=submit_query, inputs=[query_input, chatbot_display], outputs=[chatbot_display, query_input, session_stats_display] ) clear_btn.click( fn=clear_chat_handler, inputs=[], outputs=[chatbot_display, query_input, session_stats_display] ) refresh_btn.click( fn=refresh_system, inputs=[], outputs=[system_info_display, session_stats_display] ) return interface def main(): """Main function to launch the medical chatbot""" print("šŸš€ Launching Sri Lankan Maternal Health Assistant v2.0") print("=" * 60) # Create and launch interface interface = create_medical_chatbot_interface() # Launch with custom settings interface.launch( server_name="0.0.0.0", server_port=7860, share=True, # Enable public sharing show_error=True, inbrowser=True, debug=True ) if __name__ == "__main__": main()