#!/usr/bin/env python3 """ Test Suite for Comprehensive Medical Document Chunking Validates clinical context preservation and chunk quality """ import json import pytest from pathlib import Path from typing import Dict, List, Any import logging # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class ChunkingQualityValidator: """Validates the quality of medical document chunking""" def __init__(self, chunks_dir: Path = Path("comprehensive_chunks")): self.chunks_dir = chunks_dir self.test_results = {} def load_chunking_report(self) -> Dict[str, Any]: """Load the comprehensive chunking report""" report_file = self.chunks_dir / "comprehensive_chunking_report.json" if not report_file.exists(): raise FileNotFoundError(f"Chunking report not found: {report_file}") with open(report_file) as f: return json.load(f) def load_sample_chunks(self, doc_name: str, limit: int = 5) -> List[Dict]: """Load sample chunks from a document""" doc_chunks_file = self.chunks_dir / doc_name / "comprehensive_chunks.json" if not doc_chunks_file.exists(): return [] with open(doc_chunks_file) as f: chunks = json.load(f) return chunks[:limit] def test_basic_statistics(self, report: Dict[str, Any]) -> bool: """Test basic chunking statistics""" logger.info("Testing basic chunking statistics...") try: # Test that we have reasonable number of chunks total_chunks = report['total_chunks'] total_docs = report['total_documents'] assert total_chunks > 0, "No chunks were created" assert total_docs > 0, "No documents were processed" assert total_chunks >= total_docs, "Too few chunks per document" # Test chunk distribution chunk_types = report['chunk_type_distribution'] assert len(chunk_types) > 0, "No chunk types identified" # Test importance distribution importance_dist = report['clinical_importance_distribution'] high_importance = importance_dist.get('critical', 0) + importance_dist.get('high', 0) assert high_importance > 0, "No high importance chunks found" logger.info(f"✅ Basic statistics: {total_chunks} chunks from {total_docs} documents") self.test_results['basic_statistics'] = True return True except AssertionError as e: logger.error(f"❌ Basic statistics test failed: {e}") self.test_results['basic_statistics'] = False return False def test_clinical_content_recognition(self, report: Dict[str, Any]) -> bool: """Test that clinical content is properly recognized""" logger.info("Testing clinical content recognition...") try: processing_summary = report['processing_summary'] # Test for maternal health content maternal_chunks = processing_summary.get('maternal_chunks', 0) assert maternal_chunks > 0, "No maternal health content identified" # Test for dosage information dosage_chunks = processing_summary.get('dosage_chunks', 0) assert dosage_chunks > 0, "No dosage information identified" # Test for emergency content emergency_chunks = processing_summary.get('emergency_chunks', 0) # Emergency content is optional but good to have # Test for table preservation table_chunks = processing_summary.get('chunks_with_tables', 0) assert table_chunks > 0, "No table content preserved" logger.info(f"✅ Clinical content: {maternal_chunks} maternal, {dosage_chunks} dosage, {table_chunks} with tables") self.test_results['clinical_content'] = True return True except AssertionError as e: logger.error(f"❌ Clinical content test failed: {e}") self.test_results['clinical_content'] = False return False def test_chunk_quality(self, report: Dict[str, Any]) -> bool: """Test individual chunk quality""" logger.info("Testing chunk quality...") try: # Load sample chunks from different documents doc_names = list(report['document_statistics'].keys()) sample_count = 0 valid_chunks = 0 for doc_name in doc_names[:3]: # Test first 3 documents chunks = self.load_sample_chunks(doc_name, limit=3) for chunk in chunks: sample_count += 1 # Test chunk structure required_fields = ['content', 'chunk_type', 'clinical_importance', 'medical_context'] if all(field in chunk for field in required_fields): valid_chunks += 1 # Test content quality content = chunk['content'] if len(content.strip()) > 50: # Reasonable content length # Test clinical importance scoring importance = chunk['clinical_importance'] if 0 <= importance <= 1: # Test medical context context = chunk['medical_context'] if isinstance(context, dict) and len(context) > 0: continue chunk_quality_ratio = valid_chunks / sample_count if sample_count > 0 else 0 assert chunk_quality_ratio >= 0.8, f"Chunk quality too low: {chunk_quality_ratio:.2f}" logger.info(f"✅ Chunk quality: {valid_chunks}/{sample_count} chunks passed quality checks") self.test_results['chunk_quality'] = True return True except AssertionError as e: logger.error(f"❌ Chunk quality test failed: {e}") self.test_results['chunk_quality'] = False return False except Exception as e: logger.error(f"❌ Chunk quality test error: {e}") self.test_results['chunk_quality'] = False return False def test_medical_context_preservation(self) -> bool: """Test that medical context is properly preserved""" logger.info("Testing medical context preservation...") try: # Load LangChain documents langchain_file = self.chunks_dir / "langchain_documents_comprehensive.json" if not langchain_file.exists(): raise FileNotFoundError("LangChain documents not found") with open(langchain_file) as f: langchain_docs = json.load(f) # Test sample of documents medical_context_count = 0 total_tested = 0 for doc in langchain_docs[:20]: # Test first 20 documents total_tested += 1 metadata = doc.get('metadata', {}) # Check for medical context fields medical_fields = [ 'chunk_type', 'clinical_importance', 'keywords', 'has_clinical_protocols', 'has_dosage_info', 'is_maternal_specific' ] if any(field in metadata for field in medical_fields): medical_context_count += 1 context_ratio = medical_context_count / total_tested if total_tested > 0 else 0 assert context_ratio >= 0.8, f"Medical context preservation too low: {context_ratio:.2f}" logger.info(f"✅ Medical context: {medical_context_count}/{total_tested} documents have medical context") self.test_results['medical_context'] = True return True except AssertionError as e: logger.error(f"❌ Medical context test failed: {e}") self.test_results['medical_context'] = False return False except Exception as e: logger.error(f"❌ Medical context test error: {e}") self.test_results['medical_context'] = False return False def test_document_coverage(self, report: Dict[str, Any]) -> bool: """Test that all documents were processed""" logger.info("Testing document coverage...") try: doc_stats = report['document_statistics'] processed_docs = len(doc_stats) # We should have processed all 15 maternal health documents expected_min_docs = 10 # Minimum expected assert processed_docs >= expected_min_docs, f"Too few documents processed: {processed_docs}" # Check that each document has reasonable chunks docs_with_good_coverage = 0 for doc_name, stats in doc_stats.items(): if stats['total_chunks'] > 0: docs_with_good_coverage += 1 coverage_ratio = docs_with_good_coverage / processed_docs assert coverage_ratio >= 0.9, f"Document coverage too low: {coverage_ratio:.2f}" logger.info(f"✅ Document coverage: {docs_with_good_coverage}/{processed_docs} documents well covered") self.test_results['document_coverage'] = True return True except AssertionError as e: logger.error(f"❌ Document coverage test failed: {e}") self.test_results['document_coverage'] = False return False def test_clinical_importance_distribution(self, report: Dict[str, Any]) -> bool: """Test that clinical importance is properly distributed""" logger.info("Testing clinical importance distribution...") try: importance_dist = report['clinical_importance_distribution'] total = sum(importance_dist.values()) critical_ratio = importance_dist.get('critical', 0) / total high_ratio = importance_dist.get('high', 0) / total # We expect a good amount of high-importance content for medical guidelines high_importance_ratio = critical_ratio + high_ratio assert high_importance_ratio >= 0.3, f"Too little high-importance content: {high_importance_ratio:.2f}" logger.info(f"✅ Clinical importance: {high_importance_ratio:.1%} high-importance chunks") self.test_results['clinical_importance'] = True return True except AssertionError as e: logger.error(f"❌ Clinical importance test failed: {e}") self.test_results['clinical_importance'] = False return False def run_all_tests(self) -> Dict[str, bool]: """Run all quality validation tests""" logger.info("=" * 80) logger.info("STARTING COMPREHENSIVE CHUNKING QUALITY VALIDATION") logger.info("=" * 80) try: # Load the chunking report report = self.load_chunking_report() # Run all tests tests = [ ('Basic Statistics', lambda: self.test_basic_statistics(report)), ('Clinical Content Recognition', lambda: self.test_clinical_content_recognition(report)), ('Chunk Quality', lambda: self.test_chunk_quality(report)), ('Medical Context Preservation', lambda: self.test_medical_context_preservation()), ('Document Coverage', lambda: self.test_document_coverage(report)), ('Clinical Importance Distribution', lambda: self.test_clinical_importance_distribution(report)) ] results = {} passed_tests = 0 for test_name, test_func in tests: logger.info(f"\n🧪 Running: {test_name}") try: result = test_func() results[test_name] = result if result: passed_tests += 1 except Exception as e: logger.error(f"❌ {test_name} failed with error: {e}") results[test_name] = False # Summary logger.info("\n" + "=" * 80) logger.info("CHUNKING QUALITY VALIDATION SUMMARY") logger.info("=" * 80) logger.info(f"✅ Tests Passed: {passed_tests}/{len(tests)}") for test_name, result in results.items(): status = "✅ PASS" if result else "❌ FAIL" logger.info(f"{status}: {test_name}") overall_success = passed_tests >= (len(tests) * 0.8) # 80% pass rate if overall_success: logger.info("\n🎉 OVERALL RESULT: CHUNKING QUALITY VALIDATION PASSED!") else: logger.info("\n⚠️ OVERALL RESULT: CHUNKING QUALITY VALIDATION NEEDS IMPROVEMENT") logger.info("=" * 80) return results except Exception as e: logger.error(f"❌ Validation failed with error: {e}") return {} def main(): """Main test function""" validator = ChunkingQualityValidator() results = validator.run_all_tests() # Save test results test_results_file = Path("comprehensive_chunks") / "quality_validation_results.json" with open(test_results_file, "w") as f: json.dump({ 'test_results': results, 'summary': { 'total_tests': len(results), 'passed_tests': sum(results.values()), 'pass_rate': sum(results.values()) / len(results) if results else 0 } }, f, indent=2) logger.info(f"📋 Test results saved to: {test_results_file}") if __name__ == "__main__": main()