Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
from PIL import Image | |
import random | |
from diffusers import StableDiffusionXLPipeline | |
from diffusers import EulerAncestralDiscreteScheduler | |
import torch | |
from compel import Compel, ReturnedEmbeddingsType | |
import gc | |
import os | |
# Check if CUDA is available | |
print(f"CUDA available: {torch.cuda.is_available()}") | |
if torch.cuda.is_available(): | |
print(f"CUDA device: {torch.cuda.get_device_name(0)}") | |
# Initialize the pipeline ONCE at startup | |
print("Loading pipeline...") | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"dhead/wai-nsfw-illustrious-sdxl-v140-sdxl", | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True, | |
low_cpu_mem_usage=True | |
) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
# Enable memory efficient attention if available | |
if hasattr(pipe, "enable_model_cpu_offload"): | |
pipe.enable_model_cpu_offload() | |
elif hasattr(pipe, "enable_attention_slicing"): | |
pipe.enable_attention_slicing() | |
print("Pipeline loaded successfully!") | |
# Initialize Compel for long prompt processing | |
compel = None | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1216 | |
# Default prompt | |
DEFAULT_PROMPT = "Detailed illustration, realistic style, portrait of a beautiful Japanese woman, wearing an elegant traditional Japanese uniform, neatly tailored with intricate patterns and subtle textures, serene expression, soft natural lighting, standing gracefully in a traditional Japanese garden with cherry blossom petals gently falling in the background, cinematic quality, ultra-detailed, high-resolution, warm tones" | |
def initialize_compel(): | |
"""Initialize Compel with the current pipeline's components""" | |
global compel | |
if compel is None: | |
try: | |
compel = Compel( | |
tokenizer=[pipe.tokenizer, pipe.tokenizer_2], | |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2], | |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
requires_pooled=[False, True], | |
truncate_long_prompts=False | |
) | |
except Exception as e: | |
print(f"Failed to initialize Compel: {e}") | |
compel = None | |
return compel | |
def process_long_prompt(prompt, negative_prompt=""): | |
"""Simple long prompt processing using Compel""" | |
try: | |
comp = initialize_compel() | |
if comp is None: | |
return None, None | |
conditioning, pooled = comp([prompt, negative_prompt]) | |
return conditioning, pooled | |
except Exception as e: | |
print(f"Long prompt processing failed: {e}, falling back to standard processing") | |
return None, None | |
# Increased duration for stability | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
try: | |
# Move pipeline to GPU inside the GPU-decorated function | |
pipe.to("cuda") | |
# Ensure all components are on GPU with correct dtype | |
pipe.text_encoder = pipe.text_encoder.to(dtype=torch.float16) | |
pipe.text_encoder_2 = pipe.text_encoder_2.to(dtype=torch.float16) | |
pipe.vae = pipe.vae.to(dtype=torch.float16) | |
pipe.unet = pipe.unet.to(dtype=torch.float16) | |
use_long_prompt = len(prompt.split()) > 60 or len(prompt) > 300 | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
# Try long prompt processing first if prompt is long | |
if use_long_prompt: | |
print("Using long prompt processing...") | |
conditioning, pooled = process_long_prompt(prompt, negative_prompt) | |
if conditioning is not None: | |
output_image = pipe( | |
prompt_embeds=conditioning[0:1], | |
pooled_prompt_embeds=pooled[0:1], | |
negative_prompt_embeds=conditioning[1:2], | |
negative_pooled_prompt_embeds=pooled[1:2], | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
# Clear GPU cache | |
torch.cuda.empty_cache() | |
gc.collect() | |
return output_image | |
# Fall back to standard processing | |
output_image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
# Clear GPU cache | |
torch.cuda.empty_cache() | |
gc.collect() | |
return output_image | |
except RuntimeError as e: | |
print(f"Runtime error during generation: {e}") | |
torch.cuda.empty_cache() | |
gc.collect() | |
# Return a blank image with error message | |
error_img = Image.new('RGB', (width, height), color=(50, 50, 50)) | |
return error_img | |
except Exception as e: | |
print(f"Unexpected error: {e}") | |
torch.cuda.empty_cache() | |
gc.collect() | |
error_img = Image.new('RGB', (width, height), color=(100, 0, 0)) | |
return error_img | |
css = """ | |
/* Main container styling */ | |
#col-container { | |
margin: 0 auto; | |
max-width: 1024px; | |
} | |
/* Gradient background for the entire app */ | |
.gradio-container { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #f5576c 75%, #ffc947 100%); | |
min-height: 100vh; | |
} | |
/* Main block styling with semi-transparent background */ | |
.contain { | |
background: rgba(255, 255, 255, 0.95); | |
border-radius: 20px; | |
padding: 20px; | |
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37); | |
backdrop-filter: blur(4px); | |
border: 1px solid rgba(255, 255, 255, 0.18); | |
} | |
/* Input field styling */ | |
.gr-text-input { | |
background: rgba(255, 255, 255, 0.9) !important; | |
border: 2px solid rgba(102, 126, 234, 0.3) !important; | |
border-radius: 10px !important; | |
} | |
/* Button styling */ | |
.gr-button { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
border: none !important; | |
color: white !important; | |
font-weight: bold !important; | |
transition: all 0.3s ease !important; | |
} | |
.gr-button:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4); | |
} | |
/* Accordion styling */ | |
.gr-accordion { | |
background: rgba(255, 255, 255, 0.8) !important; | |
border-radius: 10px !important; | |
margin-top: 10px !important; | |
} | |
/* Result image container */ | |
.gr-image { | |
border-radius: 15px !important; | |
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1) !important; | |
} | |
/* Slider styling */ | |
.gr-slider { | |
background: rgba(255, 255, 255, 0.8) !important; | |
} | |
/* Additional styling for headers */ | |
h1, h2, h3 { | |
color: #333 !important; | |
text-align: center; | |
} | |
/* Markdown text styling */ | |
.gr-markdown { | |
text-align: center; | |
margin-bottom: 20px; | |
} | |
""" | |
print("Building Gradio interface...") | |
# Build the Gradio interface | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown( | |
""" | |
# 🎨 Stable Diffusion XL Image Generator | |
### Create stunning AI-generated images with advanced controls | |
""" | |
) | |
# Badge section | |
gr.HTML( | |
""" | |
<div style="display: flex; justify-content: center; align-items: center; gap: 20px; margin: 20px 0;"> | |
<a href="https://huggingface.co/spaces/Heartsync/Wan-2.2-ADULT" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=T2I%20%26%20TI2V&message=Wan-2.2-ADULT&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge"> | |
</a> | |
<a href="https://huggingface.co/spaces/Heartsync/PornHUB" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=T2I%20&message=PornHUB&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge"> | |
</a> | |
<a href="https://huggingface.co/spaces/Heartsync/Hentai-Adult" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=T2I%20&message=Hentai-Adult&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge"> | |
</a> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt (long prompts are automatically supported)", | |
container=False, | |
value=DEFAULT_PROMPT | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(format="png", label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
value="monochrome, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn," | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=MAX_IMAGE_SIZE, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=20.0, | |
step=0.1, | |
value=7, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=28, | |
step=1, | |
value=28, | |
) | |
# Connect the run button to the inference function | |
run_button.click( | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result] | |
) | |
print("Starting Gradio app...") | |
# Launch the app - CRITICAL: This must be at the module level for Spaces | |
demo.queue(max_size=20) | |
demo.launch() |