File size: 39,507 Bytes
4a1aee0 011e303 f4f1b7b 9f09ea4 f4f1b7b 11444c3 4a1aee0 f4f1b7b 4a1aee0 011e303 4a1aee0 f4f1b7b 4a1aee0 f4f1b7b 691c705 f4f1b7b 1bd1ebe f4f1b7b ab077e0 873c857 f4f1b7b 873c857 f4f1b7b fc6da0a f4f1b7b fc6da0a f4f1b7b 873c857 1bd1ebe f4f1b7b 9f09ea4 f4f1b7b 873c857 f4f1b7b 873c857 f4f1b7b 873c857 f4f1b7b 873c857 f4f1b7b 873c857 f4f1b7b 873c857 f4f1b7b 873c857 f4f1b7b 873c857 1bd1ebe f4f1b7b 873c857 f4f1b7b 873c857 f4f1b7b 873c857 f4f1b7b 873c857 f4f1b7b 1bd1ebe 1105931 873c857 4f95ea3 306c88c f4f1b7b 306c88c 4a1aee0 873c857 4a1aee0 011e303 f4f1b7b 011e303 f4f1b7b 011e303 f4f1b7b 011e303 f4f1b7b 011e303 f4f1b7b 011e303 f4f1b7b e5c3e33 4a1aee0 f4f1b7b 4a1aee0 1bd1ebe f4f1b7b 011e303 4a1aee0 f4f1b7b 6b65f5f fd9a2cb 011e303 f4f1b7b c81347b f4f1b7b 0e5b7bd f4f1b7b c81347b f4f1b7b c81347b f4f1b7b c81347b 72bdc43 f4f1b7b 1bd1ebe f4f1b7b 9f09ea4 f4f1b7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
import os
import spaces
import gradio as gr
import numpy as np
from PIL import Image
import random
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import torch
from transformers import pipeline as transformers_pipeline
import re
from cohere import ClientV2 # Changed from HuggingFace to Cohere
# ------------------------------------------------------------
# DEVICE SETUP
# ------------------------------------------------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ------------------------------------------------------------
# STABLE DIFFUSION XL PIPELINE
# ------------------------------------------------------------
pipe = StableDiffusionXLPipeline.from_pretrained(
"votepurchase/waiREALCN_v14",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
# Force important sub-modules to fp16 for VRAM efficiency
for sub in (pipe.text_encoder, pipe.text_encoder_2, pipe.vae, pipe.unet):
sub.to(torch.float16)
# ------------------------------------------------------------
# INITIALIZE COHERE CLIENT FOR TRANSLATIONS AND PROMPT GENERATION
# ------------------------------------------------------------
coh_api_key = os.getenv("COH_API")
if not coh_api_key:
print("[WARNING] COH_API environment variable not found. LLM features will not work.")
coh_client = None
else:
try:
coh_client = ClientV2(api_key=coh_api_key)
print("[INFO] Cohere client initialized successfully.")
except Exception as e:
print(f"[ERROR] Failed to initialize Cohere client: {str(e)}")
coh_client = None
# 1. 비영어 문자 감지 정규식을 더 명확하게 수정
# 한글, 일본어, 중국어를 명시적으로 포함
non_english_regex = re.compile(r'[\uac00-\ud7a3\u3040-\u30ff\u3400-\u4dbf\u4e00-\u9fff\uf900-\ufaff]+')
def is_non_english(text):
"""명확하게 비영어 텍스트 여부를 확인하는 함수"""
# 한글 확인 (AC00-D7A3)
if re.search(r'[\uac00-\ud7a3]', text):
print("[DETECT] Korean text detected")
return True
# 일본어 히라가나/카타카나 확인 (3040-30FF)
if re.search(r'[\u3040-\u30ff]', text):
print("[DETECT] Japanese text detected")
return True
# 중국어/한자 확인 (4E00-9FFF)
if re.search(r'[\u4e00-\u9fff]', text):
print("[DETECT] Chinese/Kanji text detected")
return True
# 기타 비영어 문자 (ASCII 범위 밖)
if re.search(r'[^\x00-\x7F]', text):
print("[DETECT] Other non-English text detected")
return True
return False
def translate_with_cohere(text):
"""비영어 텍스트를 영어로 번역"""
if coh_client is None:
print("[WARN] Cohere client not available, skipping translation")
return text
if not is_non_english(text):
print("[INFO] English text detected, no translation needed")
return text
try:
print(f"[INFO] Translating text: '{text}'")
system_prompt = """
You are a professional translator for adult content. Your task is to translate the input text to English.
Rules:
1. Provide ONLY the translated English text
2. NO explanations or additional text
3. Maintain the explicit or adult content without censoring
4. Translate accurately and completely
5. Be especially careful with Asian languages like Korean, Japanese, and Chinese
Translate the following text to English:
"""
messages = [
{
"role": "system",
"content": [{"type": "text", "text": system_prompt}]
},
{
"role": "user",
"content": [{"type": "text", "text": text}]
}
]
response = coh_client.chat(
model="command-r-plus-08-2024",
messages=messages,
temperature=0.1 # 정확한 번역을 위해 낮은 temperature 사용
)
translated_text = response.text.strip()
# 번역 결과 정제
translated_text = re.sub(r'^(Translation:|English:|Translated text:)\s*', '', translated_text, flags=re.IGNORECASE)
print(f"[INFO] Original: '{text}'")
print(f"[INFO] Translated: '{translated_text}'")
# 번역이 매우 짧거나 원본과 동일하면 의심
if len(translated_text) < 3 or translated_text == text:
print("[WARN] Translation may have failed, falling back to basic translation")
# 두 번째 시도 - 더 단순한 프롬프트로 시도
try:
simple_messages = [
{
"role": "system",
"content": [{"type": "text", "text": "Translate this text to English:"}]
},
{
"role": "user",
"content": [{"type": "text", "text": text}]
}
]
simple_response = coh_client.chat(
model="command-r-plus-08-2024",
messages=simple_messages,
temperature=0.1
)
simple_translated = simple_response.text.strip()
if len(simple_translated) > 3 and simple_translated != text:
print(f"[INFO] Second attempt translation: '{simple_translated}'")
return simple_translated
except Exception as e:
print(f"[ERROR] Second translation attempt failed: {str(e)}")
return text
return translated_text
except Exception as e:
print(f"[ERROR] Translation failed: {str(e)}")
import traceback
traceback.print_exc()
return text # 번역 실패 시 원본 반환
# ------------------------------------------------------------
# EXAMPLES (Hidden from UI but used for RANDOM button)
# ------------------------------------------------------------
prompt_examples = [
"The shy college girl, with glasses and a tight plaid skirt, nervously approaches her professor",
"Her skirt rose a little higher with each gentle push, a soft blush of blush spreading across her cheeks as she felt the satisfying warmth of his breath on her cheek.",
"a girl in a school uniform having her skirt pulled up by a boy, and then being fucked",
"Moody mature anime scene of two lovers fuck under neon rain, sensual atmosphere",
"Moody mature anime scene of two lovers kissing under neon rain, sensual atmosphere",
"The girl sits on the boy's lap by the window, his hands resting on her waist. She is unbuttoning his shirt, her expression focused and intense.",
"A girl with long, black hair is sleeping on her desk in the classroom. Her skirt has ridden up, revealing her thighs, and a trail of drool escapes her slightly parted lips.",
"The waves rolled gently, a slow, sweet kiss of the lip, a slow, slow build of anticipation as their toes bumped gently – a slow, sweet kiss of the lip, a promise of more to come.",
"Her elegant silk gown swayed gracefully as she approached him, the delicate fabric brushing against her legs. A warm blush spread across her cheeks as she felt his breath on her face.",
"Her white blouse and light cotton skirt rose a little higher with each gentle push, a soft blush spreading across her cheeks as she felt the satisfying warmth of his breath on her cheek.",
"A woman in a business suit having her skirt lifted by a man, and then being sexually assaulted.",
"The older woman sits on the man's lap by the fireplace, his hands resting on her hips. She is unbuttoning his vest, her expression focused and intense. He takes control of the situation as she finishes unbuttoning his shirt, pushing her onto her back and begins to have sex with her.",
"There is a woman with long black hair. Her face features alluring eyes and full lips, with a slender figure adorned in black lace lingerie. She lies on the bed, loosening her lingerie strap with one hand while seductively glancing downward.",
"In a dimly lit room, the same woman teases with her dark, flowing hair, now covering her voluptuous breasts, while a black garter belt accentuates her thighs. She sits on the sofa, leaning back, lifting one leg to expose her most private areas through the sheer lingerie.",
"A woman with glasses, lying on the bed in just her bra, spreads her legs wide, revealing all! She wears a sultry expression, gazing directly at the viewer with her brown eyes, her short black hair cascading over the pillow. Her slim figure, accentuated by the lacy lingerie, exudes a seductive aura.",
"A soft focus on the girl's face, eyes closed, biting her lip, as her roommate performs oral pleasure, the experienced woman's hair cascading between her thighs.",
"A woman in a blue hanbok sits on a wooden floor, her legs folded beneath her, gazing out of a window, the sunlight highlighting the graceful lines of her clothing.",
"The couple, immersed in a wooden outdoor bath, share an intimate moment, her wet kimono clinging to her curves, his hands exploring her body beneath the water's surface.",
"A steamy shower scene, the twins embrace under the warm water, their soapy hands gliding over each other's curves, their passion intensifying as they explore uncharted territories.",
"The teacher, with a firm grip, pins the student against the blackboard, her skirt hiked up, exposing her delicate lace panties. Their heavy breathing echoes in the quiet room as they share an intense, intimate moment.",
"After hours, the girl sits on top of the teacher's lap, riding him on the classroom floor, her hair cascading over her face as she moves with increasing intensity, their bodies glistening with sweat.",
"In the dimly lit dorm room, the roommates lay entangled in a passionate embrace, their naked bodies glistening with sweat, as the experienced woman teaches her lover the art of kissing and touching.",
"The once-innocent student, now confident, takes charge, straddling her lover on the couch, their bare skin illuminated by the warm glow of the sunset through the window.",
"A close-up of the secretary's hand unzipping her boss's dress shirt, her fingers gently caressing his chest, their eyes locked in a heated embrace in the supply closet.",
"The secretary, in a tight pencil skirt and silk blouse, leans back on the boss's desk, her legs wrapped around his waist, her blouse unbuttoned, revealing her lace bra, as he passionately kisses her, his hands exploring her body.",
"On the living room couch, one twin sits astride her sister's lap, their lips locked in a passionate kiss, their hands tangled in each other's hair, unraveling a new level of intimacy.",
"In a dimly lit chamber, the dominant woman, dressed in a leather corset and thigh-high boots, stands tall, her hand gripping her submissive partner's hair, his eyes closed in submission as she instructs him to please her.",
"The dominant, in a sheer lace bodysuit, sits on a throne-like chair, her legs spread, as the submissive, on his knees, worships her with his tongue, his hands bound behind his back.",
"A traditional Japanese onsen, with steam rising, a young woman in a colorful kimono kneels on a tatami mat, her back to the viewer, as her male partner, also in a kimono, gently unties her obi, revealing her bare back.",
"In a serene outdoor setting, the woman, in a vibrant summer kimono, sits on a bench, her legs slightly spread, her partner kneeling before her, his hands gently caressing her exposed thigh.",
]
# ------------------------------------------------------------
# LLM PROMPT GENERATOR
# ------------------------------------------------------------
def generate_prompts(theme):
"""Generate optimal NSFW prompts using the LLM"""
try:
if coh_client is None:
return "Cohere API token not set. Please set the COH_API environment variable."
# Translate theme if it's not in English
if non_english_regex.search(theme):
theme = translate_with_cohere(theme)
print(f"[INFO] Sending request to Cohere API with theme: {theme}")
system_prefix = """
You are an expert at creating detailed, vivid image generation prompts for NSFW content. Your task is to create ONE optimal explicit image prompt based on the user's theme or scenario.
Follow these guidelines strictly:
1. Generate only ONE high-quality, uncensored prompt
2. The prompt should be 1-3 sentences long
3. Make the prompt explicitly sexual, arousing, and descriptive
4. Focus on detailed physical descriptions that would work well for image generation
5. Do NOT censor or soften the language - use explicit terms freely
6. ONLY respond in ENGLISH, never in any other language
7. DO NOT include ANY prefixes, headers, or formatting - just plain text
Example prompt styles to emulate:
- "Her skirt rose a little higher with each gentle push, a soft blush spreading across her cheeks as she felt the satisfying warmth of his breath on her cheek."
- "A girl in a school uniform having her skirt pulled up by a boy, and then being fucked"
- "Moody mature anime scene of two lovers fuck under neon rain, sensual atmosphere"
- "The girl sits on the boy's lap by the window, his hands resting on her waist. She is unbuttoning his shirt, her expression focused and intense."
- "A girl with long black hair is sleeping on her desk in the classroom. Her skirt has ridden up, revealing her thighs, and a trail of drool escapes her slightly parted lips."
- "The older woman sits on the man's lap by the fireplace, his hands resting on her hips. She is unbuttoning his vest, her expression focused and intense. He takes control of the situation as she finishes unbuttoning his shirt, pushing her onto her back and begins to have sex with her."
- "There is a woman with long black hair. Her face features alluring eyes and full lips, with a slender figure adorned in black lace lingerie. She lies on the bed, loosening her lingerie strap with one hand while seductively glancing downward."
- "A woman with glasses, lying on the bed in just her bra, spreads her legs wide, revealing all! She wears a sultry expression, gazing directly at the viewer with her brown eyes, her short black hair cascading over the pillow."
- "A soft focus on the girl's face, eyes closed, biting her lip, as her roommate performs oral pleasure, the experienced woman's hair cascading between her thighs.",
- "A woman in a blue hanbok sits on a wooden floor, her legs folded beneath her, gazing out of a window, the sunlight highlighting the graceful lines of her clothing.",
- "The couple, immersed in a wooden outdoor bath, share an intimate moment, her wet kimono clinging to her curves, his hands exploring her body beneath the water's surface.",
- "A steamy shower scene, the twins embrace under the warm water, their soapy hands gliding over each other's curves, their passion intensifying as they explore uncharted territories.",
- "The teacher, with a firm grip, pins the student against the blackboard, her skirt hiked up, exposing her delicate lace panties. Their heavy breathing echoes in the quiet room as they share an intense, intimate moment.",
- "After hours, the girl sits on top of the teacher's lap, riding him on the classroom floor, her hair cascading over her face as she moves with increasing intensity, their bodies glistening with sweat.",
- "In the dimly lit dorm room, the roommates lay entangled in a passionate embrace, their naked bodies glistening with sweat, as the experienced woman teaches her lover the art of kissing and touching.",
- "The once-innocent student, now confident, takes charge, straddling her lover on the couch, their bare skin illuminated by the warm glow of the sunset through the window.",
- "A close-up of the secretary's hand unzipping her boss's dress shirt, her fingers gently caressing his chest, their eyes locked in a heated embrace in the supply closet.",
- "The secretary, in a tight pencil skirt and silk blouse, leans back on the boss's desk, her legs wrapped around his waist, her blouse unbuttoned, revealing her lace bra, as he passionately kisses her, his hands exploring her body.",
- "On the living room couch, one twin sits astride her sister's lap, their lips locked in a passionate kiss, their hands tangled in each other's hair, unraveling a new level of intimacy.",
- "In a dimly lit chamber, the dominant woman, dressed in a leather corset and thigh-high boots, stands tall, her hand gripping her submissive partner's hair, his eyes closed in submission as she instructs him to please her.",
- "The dominant, in a sheer lace bodysuit, sits on a throne-like chair, her legs spread, as the submissive, on his knees, worships her with his tongue, his hands bound behind his back.",
- "A traditional Japanese onsen, with steam rising, a young woman in a colorful kimono kneels on a tatami mat, her back to the viewer, as her male partner, also in a kimono, gently unties her obi, revealing her bare back.",
- "In a serene outdoor setting, the woman, in a vibrant summer kimono, sits on a bench, her legs slightly spread, her partner kneeling before her, his hands gently caressing her exposed thigh.",
Respond ONLY with the single prompt text in ENGLISH with NO PREFIXES of any kind.
"""
# Format messages for Cohere API
messages = [
{
"role": "system",
"content": [{"type": "text", "text": system_prefix}]
},
{
"role": "user",
"content": [{"type": "text", "text": theme}]
}
]
# Generate response using Cohere
response = coh_client.chat(
model="command-r-plus-08-2024",
messages=messages,
temperature=0.8
)
# Extract only the text content without any debug information
if hasattr(response, 'text'):
generated_prompt = response.text
else:
# Handle different response formats
try:
# Try to extract just the text content from the response
response_str = str(response)
# If it's a complex object with nested structure
if 'text=' in response_str:
text_match = re.search(r"text=['\"]([^'\"]+)['\"]", response_str)
if text_match:
generated_prompt = text_match.group(1)
else:
generated_prompt = response_str
else:
generated_prompt = response_str
except:
generated_prompt = str(response)
# FORCE translation to English if there's any non-English content
if non_english_regex.search(generated_prompt):
print("[INFO] Translating non-English prompt to English")
generated_prompt = translate_with_cohere(generated_prompt)
# Clean the prompt
generated_prompt = re.sub(r'^AI🐼:\s*', '', generated_prompt)
generated_prompt = re.sub(r'^\d+[\.\)]\s*', '', generated_prompt)
generated_prompt = re.sub(r'^(Prompt|Response|Result|Output):\s*', '', generated_prompt)
generated_prompt = re.sub(r'^["\']+|["\']+$', '', generated_prompt)
generated_prompt = generated_prompt.strip()
generated_prompt = re.sub(r'\s+', ' ', generated_prompt)
print(f"[INFO] Generated prompt: {generated_prompt}")
# Final verification - check length and ensure it's English
if len(generated_prompt) > 10:
return generated_prompt
else:
return "Failed to generate a valid prompt"
except Exception as e:
print(f"[ERROR] Prompt generation failed: {str(e)}")
import traceback
traceback.print_exc()
return f"Error generating prompt: {str(e)}"
# ------------------------------------------------------------
# SDXL INFERENCE WRAPPER
# ------------------------------------------------------------
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
"""
중요: 프롬프트 텍스트에 한글이나 다른 비영어 문자가 있으면 반드시 영어로 번역해야 합니다.
"""
print(f"[DEBUG] Original prompt received: '{prompt}'")
print(f"[DEBUG] Original negative prompt received: '{negative_prompt}'")
# 한글/비영어 감지 및 번역 (prompt)
has_korean = bool(re.search(r'[\uac00-\ud7a3]', prompt))
has_non_english = bool(re.search(r'[^\x00-\x7F]', prompt))
if has_korean or has_non_english:
print(f"[ALERT] 비영어 프롬프트 감지됨: '{prompt}'")
# Cohere를 사용하여 직접 번역
if coh_client:
try:
# 번역용 시스템 프롬프트
trans_system = "You are a translator. Translate the following text to English accurately. Only provide the translation, no comments or explanations."
# 번역 요청
trans_response = coh_client.chat(
model="command-r-plus-08-2024",
messages=[
{"role": "system", "content": [{"type": "text", "text": trans_system}]},
{"role": "user", "content": [{"type": "text", "text": prompt}]}
],
temperature=0.1
)
# 응답 처리 - 다양한 속성 접근 방법 시도
translated_prompt = None
# 방법 1: response.text
try:
if hasattr(trans_response, 'text'):
translated_prompt = trans_response.text
print("[DEBUG] 방법 1 (text 속성) 성공")
except:
pass
# 방법 2: response.response
if translated_prompt is None:
try:
if hasattr(trans_response, 'response'):
translated_prompt = trans_response.response
print("[DEBUG] 방법 2 (response 속성) 성공")
except:
pass
# 방법 3: response dictionary access
if translated_prompt is None:
try:
# 응답이 dictionary인 경우
if isinstance(trans_response, dict) and 'text' in trans_response:
translated_prompt = trans_response['text']
print("[DEBUG] 방법 3 (dictionary access) 성공")
except:
pass
# 방법 4: 문자열 변환 후 파싱
if translated_prompt is None:
try:
response_str = str(trans_response)
print(f"[DEBUG] Response structure: {response_str[:200]}...")
# text= 패턴 찾기
match = re.search(r"text=['\"](.*?)['\"]", response_str)
if match:
translated_prompt = match.group(1)
print("[DEBUG] 방법 4 (정규식 파싱) 성공")
# content 패턴 찾기
if not translated_prompt and 'content=' in response_str:
match = re.search(r"content=['\"](.*?)['\"]", response_str)
if match:
translated_prompt = match.group(1)
print("[DEBUG] 방법 4.1 (content 정규식) 성공")
except Exception as parse_err:
print(f"[DEBUG] 정규식 파싱 오류: {parse_err}")
# 최종 결과 확인
if translated_prompt:
translated_prompt = translated_prompt.strip()
print(f"[SUCCESS] 번역됨: '{prompt}' -> '{translated_prompt}'")
prompt = translated_prompt
else:
# 마지막 수단: 전체 응답 구조 로깅
print(f"[DEBUG] Full response type: {type(trans_response)}")
print(f"[DEBUG] Full response dir: {dir(trans_response)}")
print(f"[DEBUG] Could not extract translation, keeping original prompt")
except Exception as e:
print(f"[ERROR] 프롬프트 번역 실패: {str(e)}")
import traceback
traceback.print_exc()
# 번역 실패 시 원본 유지
# 한글/비영어 감지 및 번역 (negative_prompt)
has_korean = bool(re.search(r'[\uac00-\ud7a3]', negative_prompt))
has_non_english = bool(re.search(r'[^\x00-\x7F]', negative_prompt))
if has_korean or has_non_english:
print(f"[ALERT] 비영어 네거티브 프롬프트 감지됨: '{negative_prompt}'")
# Cohere를 사용하여 직접 번역 (위와 동일한 방식으로)
if coh_client:
try:
trans_system = "You are a translator. Translate the following text to English accurately. Only provide the translation, no comments or explanations."
trans_response = coh_client.chat(
model="command-r-plus-08-2024",
messages=[
{"role": "system", "content": [{"type": "text", "text": trans_system}]},
{"role": "user", "content": [{"type": "text", "text": negative_prompt}]}
],
temperature=0.1
)
# 다양한 방법으로 응답 처리 (프롬프트 처리와 동일)
translated_negative = None
# 각종 접근 방법 (동일한 로직 적용)
try:
if hasattr(trans_response, 'text'):
translated_negative = trans_response.text
elif hasattr(trans_response, 'response'):
translated_negative = trans_response.response
elif isinstance(trans_response, dict) and 'text' in trans_response:
translated_negative = trans_response['text']
else:
response_str = str(trans_response)
match = re.search(r"text=['\"](.*?)['\"]", response_str)
if match:
translated_negative = match.group(1)
elif 'content=' in response_str:
match = re.search(r"content=['\"](.*?)['\"]", response_str)
if match:
translated_negative = match.group(1)
except Exception as parse_err:
print(f"[DEBUG] 네거티브 파싱 오류: {parse_err}")
if translated_negative:
translated_negative = translated_negative.strip()
print(f"[SUCCESS] 네거티브 번역됨: '{negative_prompt}' -> '{translated_negative}'")
negative_prompt = translated_negative
except Exception as e:
print(f"[ERROR] 네거티브 프롬프트 번역 실패: {str(e)}")
print(f"[INFO] 최종 사용될 프롬프트: '{prompt}'")
print(f"[INFO] 최종 사용될 네거티브 프롬프트: '{negative_prompt}'")
if len(prompt.split()) > 60:
print("[WARN] Prompt >60 words — CLIP may truncate it.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
output_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return output_image, seed
except RuntimeError as e:
print(f"[ERROR] Diffusion failed → {e}")
return Image.new("RGB", (width, height), color=(0, 0, 0)), seed
# Function to select a random example prompt
def get_random_prompt():
return random.choice(prompt_examples)
# ------------------------------------------------------------
# UI LAYOUT + THEME (Enhanced Visual Design)
# ------------------------------------------------------------
css = """
body {background: linear-gradient(135deg, #f2e6ff 0%, #e6f0ff 100%); color: #222; font-family: 'Noto Sans', sans-serif;}
#col-container {margin: 0 auto; max-width: 768px; padding: 15px; background: rgba(255, 255, 255, 0.8); border-radius: 15px; box-shadow: 0 8px 32px rgba(31, 38, 135, 0.2);}
.gr-button {background: #7fbdf6; color: #fff; border-radius: 8px; transition: all 0.3s ease; font-weight: bold;}
.gr-button:hover {background: #5a9ae6; transform: translateY(-2px); box-shadow: 0 5px 15px rgba(0,0,0,0.1);}
#prompt-box textarea {font-size: 1.1rem; height: 9rem !important; background: #fff; color: #222; border-radius: 10px; border: 1px solid #d1c1e0;}
.boost-btn {background: #ff7eb6; margin-top: 5px;}
.boost-btn:hover {background: #ff5aa5;}
.random-btn {background: #9966ff; margin-top: 5px;}
.random-btn:hover {background: #8040ff;}
.container {animation: fadeIn 0.5s ease-in-out;}
.title {color: #6600cc; text-shadow: 1px 1px 2px rgba(0,0,0,0.1);}
.gr-form {border: none !important; background: transparent !important;}
.gr-input {border-radius: 8px !important;}
.gr-slider {height: 12px !important;}
.gr-slider .handle {height: 20px !important; width: 20px !important;}
.panel {border-radius: 12px; overflow: hidden; box-shadow: 0 4px 15px rgba(0,0,0,0.1);}
.gr-image {border-radius: 12px; overflow: hidden; transition: all 0.3s ease;}
.gr-image:hover {transform: scale(1.02); box-shadow: 0 8px 25px rgba(0,0,0,0.15);}
@keyframes fadeIn {
from {opacity: 0; transform: translateY(20px);}
to {opacity: 1; transform: translateY(0);}
}
.gr-accordion {border-radius: 10px; overflow: hidden; transition: all 0.3s ease;}
.gr-accordion:hover {box-shadow: 0 5px 15px rgba(0,0,0,0.1);}
"""
author_note = (
"**ℹ️ This code provides a test environment to experiment with the censorship limits and technical possibilities of AI-based adult content generation. It serves as an educational tool that offers researchers and creators the opportunity to test various prompt methods and understand the ethical boundaries of image generation technology. Uncensored, natural motion video generation service has also been developed but will be released in the future. You can enter prompts in any language - Korean, English, Japanese, Chinese, or any other language - and our AI will automatically translate and generate images based on your input.**"
)
# Function to boost prompt with LLM
def boost_prompt(keyword):
if not keyword or keyword.strip() == "":
return "Please enter a keyword or theme first"
if coh_client is None:
return "Cohere API token not set. Please set the COH_API environment variable."
print(f"[INFO] Generating boosted prompt for keyword: {keyword}")
prompt = generate_prompts(keyword)
# Final verification that we're only returning valid content
if isinstance(prompt, str) and len(prompt) > 10 and not prompt.startswith("Error") and not prompt.startswith("Failed"):
return prompt.strip()
else:
return "Failed to generate a suitable prompt. Please try again with a different keyword."
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown(
f"""
## 🖌️ NSFW Uncensored Text & Imagery: AI Limits Explorer
{author_note}
""", elem_classes=["title"]
)
with gr.Group(elem_classes="model-description"):
gr.HTML("""
<p>
<strong>Models Use cases: </strong><br>
</p>
<div style="display: flex; justify-content: center; align-items: center; gap: 10px; flex-wrap: wrap; margin-top: 10px; margin-bottom: 20px;">
<a href="https://huggingface.co/spaces/Heartsync/FREE-NSFW-HUB" target="_blank">
<img src="https://img.shields.io/static/v1?label=huggingface&message=FREE%20NSFW%20HUB&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/Heartsync/NSFW-Uncensored-Real" target="_blank">
<img src="https://img.shields.io/static/v1?label=Text%20to%20Image%28Real%29&message=NSFW%20Uncensored&color=%230000ff&labelColor=%23800080&logo=Huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/Heartsync/Novel-NSFW" target="_blank">
<img src="https://img.shields.io/static/v1?label=NOVEL%20GENERATOR&message=NSFW%20Uncensored&color=%23ffc0cb&labelColor=%23ffff00&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/Heartsync/adult" target="_blank">
<img src="https://img.shields.io/static/v1?label=Text%20to%20Image%20to%20Video&message=ADULT&color=%23ff00ff&labelColor=%23000080&logo=Huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/Heartsync/wan2-1-fast-security" target="_blank">
<img src="https://img.shields.io/static/v1?label=Image%20to%20Video&message=Wan%202.1%20I2V%20Fast&color=%23ffa500&labelColor=%23000080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/Heartsync/NSFW-Uncensored-video" target="_blank">
<img src="https://img.shields.io/static/v1?label=Image%20to%20Video&message=NSFW%20Uncensored&color=%230000ff&labelColor=%23800080&logo=Huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/Heartsync/NSFW-Uncensored-video2" target="_blank">
<img src="https://img.shields.io/static/v1?label=Image%20to%20Video(Mirror)&message=NSFW%20Uncensored&color=%230000ff&labelColor=%23800080&logo=Huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/Heartsync/NSFW-Uncensored" target="_blank">
<img src="https://img.shields.io/static/v1?label=Text%20to%20Image%28Anime%29&message=NSFW%20Uncensored&color=%230000ff&labelColor=%23800080&logo=Huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
</a>
</div>
<p>
<small style="opacity: 0.8;">High-quality image generation powered by StableDiffusionXL with video generation capability. Supports long prompts and various artistic styles.</small>
</p>
""")
# Create state variables to store the current image
current_image = gr.State(None)
current_seed = gr.State(0)
with gr.Column(elem_id="col-container", elem_classes=["container", "panel"]):
# Add keyword input and boost button
with gr.Row():
keyword_input = gr.Text(
label="Keyword Input",
show_label=True,
max_lines=1,
placeholder="Enter a keyword or theme in any language to generate an optimal prompt",
value="random",
)
boost_button = gr.Button("BOOST", elem_classes=["boost-btn"])
random_button = gr.Button("RANDOM", elem_classes=["random-btn"])
with gr.Row():
prompt = gr.Text(
label="Prompt",
elem_id="prompt-box",
show_label=True,
max_lines=3, # Increased to 3 lines (3x original)
placeholder="Enter your prompt in any language (Korean, English, Japanese, etc.)",
)
run_button = gr.Button("Generate", scale=0)
# Image output area
result = gr.Image(label="Generated Image", elem_classes=["gr-image"])
with gr.Accordion("Advanced Settings", open=False, elem_classes=["gr-accordion"]):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt in any language",
value="text, talk bubble, low quality, watermark, signature",
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7)
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=28, step=1, value=28)
# Define a function to store the generated image in state
def update_image_state(img, seed_val):
return img, seed_val
# Connect boost button to generate prompt
boost_button.click(
fn=boost_prompt,
inputs=[keyword_input],
outputs=[prompt]
)
# Connect random button to insert random example
random_button.click(
fn=get_random_prompt,
inputs=[],
outputs=[prompt]
)
# Connect image generation button
run_button.click(
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, current_seed]
).then(
fn=update_image_state,
inputs=[result, current_seed],
outputs=[current_image, current_seed]
)
demo.queue().launch() |