import torch import torch.nn as nn import torch.nn.functional as F class SelfAttention(nn.Module): def __init__(self, d_model, nhead): super().__init__() self.qkv_proj = nn.Linear(d_model, 3 * d_model) self.out_proj = nn.Linear(d_model, d_model) self.nhead = nhead self.d_model = d_model def forward(self, x): B, T, C = x.size() qkv = self.qkv_proj(x) q, k, v = qkv.chunk(3, dim=-1) q = q.view(B, T, self.nhead, C // self.nhead).transpose(1, 2) k = k.view(B, T, self.nhead, C // self.nhead).transpose(1, 2) v = v.view(B, T, self.nhead, C // self.nhead).transpose(1, 2) scores = torch.matmul(q, k.transpose(-2, -1)) / (C // self.nhead) ** 0.5 attn = torch.softmax(scores, dim=-1) out = torch.matmul(attn, v) out = out.transpose(1, 2).contiguous().view(B, T, C) return self.out_proj(out) class FeedForward(nn.Module): def __init__(self, d_model, dim_feedforward): super().__init__() self.net = nn.Sequential( nn.Linear(d_model, dim_feedforward), nn.ReLU(), nn.Dropout(), # ✅ Important: was present in the training model nn.Linear(dim_feedforward, d_model) ) def forward(self, x): return self.net(x) class TransformerBlock(nn.Module): def __init__(self, d_model, nhead, dim_feedforward): super().__init__() self.attn = SelfAttention(d_model, nhead) self.ln1 = nn.LayerNorm(d_model) self.ffn = FeedForward(d_model, dim_feedforward) self.ln2 = nn.LayerNorm(d_model) def forward(self, x): x = x + self.attn(self.ln1(x)) x = x + self.ffn(self.ln2(x)) return x class EvoDecoder(nn.Module): def __init__(self, vocab_size, d_model=256, nhead=4, num_layers=3, dim_feedforward=512): super().__init__() self.token_emb = nn.Embedding(vocab_size, d_model) self.pos_emb = nn.Embedding(512, d_model) self.blocks = nn.Sequential(*[ TransformerBlock(d_model, nhead, dim_feedforward) for _ in range(num_layers) ]) self.ln_f = nn.LayerNorm(d_model) self.fc_out = nn.Linear(d_model, vocab_size) def forward(self, x): B, T = x.size() tok = self.token_emb(x) pos = self.pos_emb(torch.arange(T, device=x.device).unsqueeze(0).expand(B, T)) x = tok + pos x = self.blocks(x) x = self.ln_f(x) return self.fc_out(x)