import torch import torch.nn.functional as F from evo_decoder import EvoDecoder from transformers import GPT2Tokenizer # ✅ Device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # ✅ Load tokenizer and model tokenizer = GPT2Tokenizer.from_pretrained("gpt2") tokenizer.pad_token = tokenizer.eos_token model = EvoDecoder( vocab_size=tokenizer.vocab_size, d_model=256, nhead=4, num_layers=3, dim_feedforward=512 ).to(device) # ✅ Load trained weights model.load_state_dict(torch.load("evo_decoder.pt", map_location=device)) model.eval() # ✅ Response Generator @torch.no_grad() def generate_response(prompt, max_length=128, temperature=1.0, external_context=""): model.eval() # ✅ Force prompt into SQuAD-style format Evo was trained on if external_context: full_prompt = f"Context: {external_context}\nQuestion: {prompt}\nAnswer:" else: full_prompt = f"Question: {prompt}\nAnswer:" input_ids = tokenizer.encode(full_prompt, return_tensors="pt").to(device) for _ in range(max_length): logits = model(input_ids) logits = logits[:, -1, :] / temperature probs = F.softmax(logits, dim=-1) next_token = torch.multinomial(probs, num_samples=1) input_ids = torch.cat((input_ids, next_token), dim=1) if next_token.item() == tokenizer.eos_token_id: break output = tokenizer.decode(input_ids.squeeze(), skip_special_tokens=True) return output[len(full_prompt):].strip()