import os import faiss import torch from transformers import AutoTokenizer, AutoModel from sentence_transformers import SentenceTransformer from PyPDF2 import PdfReader class RAGRetriever: def __init__(self): self.encoder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") self.index = faiss.IndexFlatL2(384) self.contexts = [] self.ids = [] def add_document(self, text): sentences = text.split("\n") clean_sentences = [s.strip() for s in sentences if s.strip()] embeddings = self.encoder.encode(clean_sentences) self.index.add(embeddings) self.contexts.extend(clean_sentences) def retrieve(self, query, top_k=3): q_vec = self.encoder.encode([query]) D, I = self.index.search(q_vec, top_k) return [self.contexts[i] for i in I[0]] def extract_text_from_file(file_path): ext = os.path.splitext(file_path)[-1].lower() if ext == ".txt": with open(file_path, "r", encoding="utf-8") as f: return f.read() elif ext == ".pdf": reader = PdfReader(file_path) return "\n".join([page.extract_text() for page in reader.pages if page.extract_text()]) else: return ""