import torch.nn as nn class EvoTransformerArabic(nn.Module): def __init__(self, d_model=768, hidden_dim=1024, n_classes=2, dropout=0.1): super(EvoTransformerArabic, self).__init__() self.classifier = nn.Sequential( nn.Linear(d_model, hidden_dim), nn.ReLU(), nn.Dropout(dropout), nn.Linear(hidden_dim, hidden_dim // 2), nn.ReLU(), nn.Dropout(dropout), nn.Linear(hidden_dim // 2, n_classes) ) def forward(self, x): return self.classifier(x)